

1
2
3
4

TITLE PAGE
- Food and Life-
Upload this completed form to website with submission

ARTICLE INFORMATION		Fill in information in each box below
Article Type	Research	
Article Title (English)	Antioxidant Activity and Quality Evaluation of Ham Enriched with Mushroom Powders	
Article Title (Korean) English papers can be omitted		
Running Title (English, within 10 words)	Pork ham enriched with mushroom powders	
Author (English)	Gantumur Zuljargal1, Ju Yi Shin1, Hyeong Sang Kim1,2	
Affiliation (English)	1 School of Animal Life Convergence Science, Hankyong National University, Anseong 17579, Republic of Korea 2 Institute of Applied Humanimal Science, Hankyong National University, Anseong 17579, Republic of Korea	
Author (Korean) English papers can be omitted		
Affiliation (Korean) English papers can be omitted		
Special remarks – if authors have additional information to inform the editorial office		
ORCID and Position(All authors must have ORCID) (English) https://orcid.org	Gantumur Zuljargal (Graduate Student, https://orcid.org/0009-0000-6763-7370) Ju Yi Shin (Graduate Student, https://orcid.org/0009-0008-1532-7045) Hyeong Sang Kim (Associate Professor, https://orcid.org/0000-0001-7054-2989)	
Conflicts of interest (English) List any present or potential conflicts of interest for all authors. (This field may be published.)	The authors declare no potential conflict of interest.	
Acknowledgements (English) State funding sources (grants, funding sources, equipment, and supplies). Include name and number of grant if available. (This field may be published.)		
Author contributions (This field may be published.)	Conceptualization: Kim HS. Data curation: Zuljargal G. Formal analysis: Zuljargal G. Methodology: Kim HS. Software: Zuljargal G. Validation: Kim HS. Investigation: Zuljargal G. Writing - original draft: Zuljargal G, Shin JY, Kim HS. Writing - review & editing: Zuljargal G, Shin JY, Kim HS. (This field must list all authors)	
Ethics approval (IRB/IACUC) (English) (This field may be published.)	This manuscript does not require IRB/IACUC approval because there are no human and animal participants.	

5
6

CORRESPONDING AUTHOR CONTACT INFORMATION

For the <u>corresponding</u> author (responsible for correspondence, proofreading, and reprints)		Fill in information in each box below
First name, middle initial, last name	Hyeong Sang Kim	
Email address – this is where your proofs will be sent	dock-0307@hknu.ac.kr	

Secondary Email address	
Postal address	17579
Cell phone number	+82-010-3930-2215
Office phone number	+82-031-670-5123
Fax number	+82-031-670-5090

7

8

ACCEPTED

Antioxidant Activity and Quality Evaluation of Ham Enriched with Mushroom Powders

Abstract

9 This study evaluated the antioxidant activity and quality of the ham enriched with mushroom
10 powder. Four different types of mushrooms (oyster, shiitake, king oyster, and white button) were
11 used in the first analysis. DPPH radical scavenging activity ranged from 23.4% to 53.6%, Iron
12 chelating ability varied from 74.1% to 91.5%, and reducing power showed values between 0.12
13 to 0.61. The results showed that oyster mushrooms with the highest antioxidant activity were the
14 most acceptable and were then selected for further product formulations. Oyster mushrooms were
15 added to ham in varying concentrations: 0.5%, 1%, and 3%. The highest concentration of
16 mushrooms (3%) resulted in a decrease in moisture content, pH, lightness, water holding capacity,
17 and texture profile analysis (TPA) values ($p<0.05$). However, 3% resulted in increased fat content,
18 redness, yellowness, lipid oxidation, and TPA values ($p<0.05$). TPA values gradually increased
19 during 49 days of storage, while adhesiveness decreased with storage days. The redness,
20 yellowness, and thiobarbituric acid reactive substances values increased over time. The pH
21 increased to 21 days of storage. These findings indicated that oyster mushroom powder has the
22 potential as a natural functional ingredient for extending shelf life and improving the nutritional
23 profile of meat products. This study contributes to the development of value-added health benefits
24 of meat products.

25 **Keywords:** oyster mushroom, enriched ham, antioxidant capacity, value-added products
26

27 Introduction

28 The contemporary food industry has witnessed an unprecedented shift toward natural
29 preservation systems, driven by escalating consumer apprehension regarding synthetic additives
30 and their potential adverse health implications (Ciobanu et al., 2024). Antioxidants are added to
31 meat products to prevent lipid oxidation, delay the formation of off-flavors, and improve color
32 stability (Kumar et al., 2015). In the food industry, they can be divided into natural and synthetic
33 antioxidants. BHA (butylated hydroxyanisole), BHT (butylated hydroxytoluene), and PG (propyl
34 gallate), are examples of synthetic antioxidants; whereas, in food model systems, ingredients
35 derived from natural sources with antioxidant properties are considered natural antioxidants

36 (Sasse et al., 2009). These antioxidants play a very important role in the food industry. However,
37 some studies have identified synthetic antioxidants as toxicological and carcinogenic agents (Xu
38 et al., 2021). Therefore, the food industry is now choosing natural products over synthetic ones.

39 Edible mushrooms have emerged as candidates for natural antioxidant applications, attributed
40 to their comprehensive profile of bioactive metabolites, including phenolic compounds,
41 flavonoids, terpenoids, and ergothioneine (Palacios et al., 2011; Al Qutaibi & Kagne, 2024). These
42 compounds demonstrated potent antioxidant mechanisms through free radical scavenging, metal
43 chelation, and lipid peroxidation inhibition, with certain species exhibiting capacities comparable
44 to synthetic antioxidants (Ferreira et al., 2009; Barros et al., 2007). The application of mushroom-
45 derived antioxidants in meat products addresses critical technological challenges, as processed
46 meat systems exhibit exceptional susceptibility to lipid oxidation due to their high concentrations
47 of polyunsaturated fatty acids and pro-oxidant enzymes (Torres-Martínez et al., 2022). Lipid
48 oxidation represents the primary quality-limiting factor, manifesting through malondialdehyde
49 formation, off-flavor development, and color deterioration (Domínguez et al., 2019). Recent
50 studies indicated that the addition of mushroom powder to beef enhances sarcoplasmic protein
51 binding to lipid oxidation products, thereby reducing oxidative compounds and maintaining
52 thiobarbituric acid reactive substances values below sensory detection thresholds (Tom et al.,
53 2018).

54 Among commercial mushroom species, several varieties have demonstrated particularly
55 exceptional antioxidant properties. White button mushroom (*Agaricus bisporus*), the most widely
56 cultivated species globally, contains significant concentrations of ergothioneine, a unique sulfur-
57 containing amino acid with potent antioxidant and cytoprotective properties (Dubost et al., 2007).
58 *A. bisporus* exhibits substantial phenolic content and demonstrates effective hydroxyl radical
59 scavenging activity, with studies indicating that its antioxidant capacity increases during storage
60 due to enhanced phenolic biosynthesis under stress conditions (Gąsecka et al., 2018). King oyster
61 mushroom (*Pleurotus eryngii*), distinguished by its thick stem and minimal sporulation, possesses
62 superior antioxidant activity attributed to its elevated content of phenolic acids, particularly
63 protocatechuic and gallic acids, alongside substantial ergothioneine concentrations (Gąsecka et
64 al., 2016). *P. eryngii* demonstrates exceptional thermal stability of its bioactive compounds,
65 making it particularly suitable for processed meat applications requiring heat treatment. Research
66 has established that king oyster mushroom extracts exhibit strong ferric-reducing antioxidant
67 power (FRAP) and effectively inhibit lipid peroxidation in meat emulsion systems through
68 multiple mechanisms, including metal chelation and free radical interception (Yahia et al., 2017).
69 Shiitake mushroom (*Lentinula edodes*), renowned for its distinctive umami flavor compounds,
70 contains unique bioactive metabolites including lentinan (β -1,3-glucan), eritadenine, and diverse

71 phenolic compounds that confer exceptional antioxidant properties (Finimundy et al., 2014).
72 Studies demonstrated that shiitake powder incorporation into meat products not only provides
73 oxidative protection but also enhances flavor profiles through natural glutamate compounds while
74 reducing sodium requirements (Coelho et al., 2014).

75 Among the various edible mushroom species, the genus *Pleurotus* stands out due to its aromatic
76 qualities, high nutritional value, widespread distribution, accessibility, and affordability (Mohd
77 Zaini et al., 2023; Effiong et al., 2024). Within this genus, the oyster mushroom (*Pleurotus*
78 *ostreatus*) is particularly notable for its distinctive phytochemical profile and potent antioxidant
79 activities, which contribute to both its health-promoting properties and its value as a functional
80 food ingredient (Allam & Mohamed, 2023). Oyster mushrooms contain bioactive components,
81 including phenols, flavonoids, terpenes, and polysaccharides (Rahimah et al., 2019). They have
82 anti-microbial, anti-inflammatory, and immunostimulant activities (Jayasuriya et al., 2020;
83 Hamad et al., 2022). Studies utilizing enoki mushroom stem waste powder (2-6% inclusion) in
84 meat nuggets demonstrated improved physicochemical quality, oxidative stability, and extended
85 shelf life of the products (Banerjee et al., 2020).

86 The objective of this study was to evaluate the antioxidant properties of four mushroom powder
87 varieties and examine the mushroom powder incorporation on quality characteristics, oxidative
88 stability, and refrigerated shelf-life of processed pork ham products. This study bridges
89 fundamental research gaps in bio-based preservation methodologies while delivering actionable
90 insights for large-scale deployment of mushroom-derived antioxidant solutions.

91

92 **Materials and Methods**

93 **Experiment I: Evaluation of antioxidant properties in four mushroom species**

94 **Sample preparation and powder production.**

95 Four commercially available mushroom species, including white button mushroom (*Agaricus*
96 *bisporus*), king oyster mushroom (*Pleurotus eryngii*), shiitake (*Lentinula edodes*), and oyster
97 mushroom (*Pleurotus ostreatus*), were purchased from the local market in Anseong-si, Republic
98 of Korea. Analytical-grade chemicals, including L-ascorbic acid 2,2-diphenyl-1-picrylhydrazyl
99 (DPPH), ferrous chloride tetrahydrate, ethylenediaminetetraacetic acid (EDTA), and additional
100 reagents, were obtained from certified commercial suppliers (Merck). Fresh mushroom samples
101 underwent systematic dehydration following protocols. Specimens were sectioned longitudinally
102 and subjected to controlled thermal drying at 60°C for 24 hours using a convection oven (LO-

103 FS100, LKLAB KOREA, Republic of Korea). After desiccation, samples were subsequently
104 pulverized using a mechanical grinder to achieve a uniform particle size distribution. The
105 resulting mushroom powders were stored at -70°C until subsequent analysis.

106

107 **Total phenolic compounds**

108 Total phenolic content (TPC) was determined by the spectrophotometric Folin-Ciocalteu assay as
109 previously described with minor modifications (Lin & Tang, 2007). Sample aliquots (0.1 mL)
110 were combined with distilled water (2.8 mL), sodium carbonate solution (2.0 mL), and 50% Folin-
111 Ciocalteu reagent (0.1 mL). The reaction mixture was incubated at ambient temperature for 30
112 minutes, followed by microplate reader (EPOCH-SN, Agilent, United States). at 750 nm.
113 Quantification was performed using a gallic acid equivalent (GAE) standard curve with excellent
114 linearity ($r^2 = 0.99$).

115

116 **DPPH radical scavenging activity**

117 Free radical scavenging capacity was evaluated using the established DPPH assay methodology
118 (Huang et al., 2006). Sample extracts (2.0 mL) were mixed with freshly prepared DPPH solution
119 (0.5 mL, 0.2 mM in methanol). The reaction mixture was incubated for 30 minutes in the dark at
120 room temperature to ensure complete radical-substrate interaction. Absorbance measurements
121 were recorded at 517 nm using a microplate reader (EPOCH-SN, Agilent, United States). L-
122 ascorbic acid served as the positive control. Radical scavenging activity was calculated as follows:

123 **DPPH scavenging activity (%) = [1 - (A₁/A₀)] × 100**

124 Where A₁ represents the sample absorbance and A₀ represents the control absorbance.

125

126 **Iron chelating capacity**

127 Iron chelating capacity was assessed using the ferrozine colorimetric method with procedural
128 modifications (Le et al., 2007). Sample extracts (800 µL) were combined with ferrous chloride
129 solution (160 µL, 0.6 mM) and methanol (1440 µL), then equilibrated at room temperature for 5
130 minutes. Ferrozine solution (160 µL) was subsequently added, and the reaction proceeded in the
131 dark for 10 minutes. Absorbance was measured at 562 nm using microplate reader (EPOCH-SN,
132 Agilent, United States). EDTA served as the reference standard. Metal chelating activity was
133 calculated using the formula:

134 **Iron chelating ability (%) = [1 - (A₁/A₀) × 100**

135 Where A₁ represents the sample absorbance and A₀ represents the control absorbance.

136

137 **Reducing power**

138 The reducing power was determined using the potassium ferricyanide reduction method (Huang
139 et al., 2006). Sample extracts (1.0 mL) were mixed with sodium phosphate buffer (1.0 mL, 200
140 mM, pH 6.6) and potassium ferricyanide solution (1.0 mL, 10 mg/mL). The mixture was
141 incubated at 50°C for 20 minutes using a temperature-controlled incubator (C-INA3, Changshin,
142 Republic of Korea). Trichloroacetic acid (1.0 mL, 100 mg/mL) was added to terminate the
143 reaction. An aliquot (2.0 mL) was then combined with distilled water (2.0 mL) and ferric chloride
144 solution (0.4 mL, 1 mg/mL). Absorbance was measured at 700 nm using microplate reader
145 (EPOCH-SN, Agilent, United States), with L-ascorbic acid as the reference standard.

146

147 **Experiment II: Quality characteristics of pork ham enhanced with oyster**

148 **mushroom powder**

149 **Pork ham formulation and processing**

150 Fresh pork ham and back fat were procured from a certified retail meat market in Anseong-si,
151 Republic of Korea. The raw materials were mechanically processed using a commercial meat
152 grinder (M-12S, Fuji, Korea) equipped with a 6 mm diameter plate. Oyster mushroom
153 specimens were processed according to the dehydration protocol described previously. The meat
154 emulsion was prepared by combining ground pork components with additives (Table 1) in a
155 commercial mixer for 10-15 minutes, according to the formulation specified. Three
156 experimental treatments were developed: M1 (0.5%), M2 (1.0%), and M3 (3.0%). The
157 homogenized mixture was vacuum-packaged and equilibrated at 4°C for 10 minutes before
158 portioning into 70 g units and vacuum-sealed individually. Samples were packaged in
159 polyethylene terephthalate (PET) trays and sealed with a polypropylene (PP) film under air
160 packaging conditions. Samples were stored under refrigerated conditions (4°C) and evaluated at
161 predetermined intervals: 0, 7, 14, 21, 28, 35, 42, and 49 days. All analytical determinations were
162 performed in triplicate to ensure statistical reliability.

163

164 **Proximate composition analysis**

165 The proximate composition was determined following standardized AOAC (1995) methodologies.

166 Moisture content was quantified using the oven-drying technique at 105°C until a constant weight.
167 Crude fat content was extracted using the Soxhlet method with petroleum ether. Protein content
168 was determined by the Kjeldahl nitrogen method ($N \times 6.25$). Ash content was measured by muffle
169 furnace incineration at 550°C for 8 hours. All determinations were performed in triplicate, and
170 results were expressed as percentages on a wet weight basis.

171

172 **pH**

173 The pH of pork ham samples was determined using a calibrated digital pH meter (S220, Mettler-
174 Toledo, Switzerland). Sample homogenates were prepared by blending 10 g of minced sample
175 with 90 mL of distilled water. The pH meter was standardized using certified buffer solutions (pH
176 4.01 and 7.00) before each measurement session. Twelve replicate measurements were performed
177 per sample, and the arithmetic mean was calculated.

178

179 **Color**

180 The color measurements of pork ham samples were performed with a color reader (CR-10 Plus,
181 Konica Tokyo, Japan). Hunter L*, a*, and b*, values were determined as indicators of lightness,
182 redness, and yellowness. All color measurements were done five times after the standardization
183 of the instrument.

184

185 **Water-holding capacity (WHC)**

186 WHC was determined according to the method described by Wierbicki and Deatherage (1958)
187 with slight modifications. Approximately 1.0 g of each sample was wrapped in three layers of
188 pre-weighed gauze and centrifuged at 3,000 rpm for 10 minutes using a centrifuge (Cef-D50.6,
189 DAIHAN-Scientific, Korea). After centrifugation, the samples were carefully removed and
190 weighed again. WHC was calculated based on the weight difference before and after
191 centrifugation, representing the amount of water retained by the sample.

192
$$\text{WHC (\%)} = [(W_1 - W_2)/W_1] \times 100$$

193 Where W_1 = initial sample weight (g) and W_2 = sample weight after centrifugation (g).

194

195 **Texture profile analysis (TPA)**

196 Thermal processing was conducted by heating samples to an internal temperature of 75°C for 30
197 minutes, followed by rapid cooling in ice-cold water for 20 minutes. Cooked samples were
198 sectioned into uniform cubes ($1.0 \times 1.0 \times 1.0$ cm) for instrumental texture analysis using a texture
199 analyzer (Brookfield CT3, Ametek, USA) equipped with a cylindrical probe (3.5 mm diameter).
200 The compression test was performed at a constant crosshead speed of 0.5 mm/s with double

201 compression cycles. The following textural parameters were quantified: hardness (g), deformation
202 (mm), adhesiveness (mJ), resilience, cohesiveness, springiness (mm), gumminess (g), and
203 chewiness (mJ). Four replicate measurements were performed per sample, and mean values were
204 calculated.

205

206 **2-thiobarbituric acid reactive substances (TBARS)**

207 TBARS was measured using the method of Sinnhuber and Yu (1977). To approximately 2 g of
208 sample, 0.5 mL of antioxidant mixture solution (0.6 g BHA, 0.6 g BHT, 10.8 g propylene glycol,
209 20.8 g Tween 20), 3 mL of TBA solution containing 10 g thiobarbituric acid and 3 g NaOH, and
210 17 mL of TCA solution containing 10 g trichloroacetic acid and 6 mL of 0.6 N NaOH were added.
211 The sample solution was heated in a 100 °C water bath for 30 minutes, then centrifuged using a
212 centrifuge (Cef-D50.6, DAIHAN-Scientific, Korea) at 3,000 rpm for 5 minutes to collect the
213 supernatant. This supernatant was mixed with chloroform and centrifuged, then mixed again with
214 petroleum ether before measuring absorbance at 532 nm using microplate reader (EPOCH-SN,
215 Agilent, United States). TBARS values were calculated using the following equation:

216 $\text{TBARS (mg of malondialdehyde/kg of sample)} = (\text{O.D.} \times 9.48) / \text{sample weight(g)}$

217

218 **Peroxide value (POV)**

219 POV was determined according to the method of Shantha and Decker (1994). To 0.6 g of sample,
220 10 mL of chloroform: methanol (1:1) solution was added and mixed for 20 seconds, followed by
221 the addition of 6.16 mL of 0.5% NaCl solution and centrifugation (3,000 rpm, 5 minutes). To 4
222 mL of the lower layer, 2.66 mL of chloroform: methanol (1:1) solution and 100 μL each of iron
223 (II) chloride solution and ammonium thiocyanate solution were added and allowed to react at
224 room temperature for 20 minutes before measuring absorbance at 500 nm using microplate reader
225 (EPOCH-SN, Agilent, United States). POV values were calculated using the following equation:

226 $\text{POV (meq/kg)} = [(\text{Abs}/0.0483) \times (2 + 1.33 + 0.025 + 0.025) \times 5/2] / \text{sample weight (g)}$

227

228 **Microbiological analysis**

229 Microbial analysis was assessed by enumerating the total aerobic plate count (TPC) and coliform
230 bacteria. Serial dilutions (1:9) of sample homogenates were prepared in sterile peptone water.
231 Aliquots (100 μL) were plated onto plate count agar for TPC determination and violet, red bile
232 agar (VRBA) for coliform enumeration. Plates were incubated at 37°C for 24-48 hours under
233 aerobic conditions. Colony-forming units were counted and expressed as log CFU/g.

234

235 **Statistical analysis**

236 All experimental data were analyzed using SPSS version 21.0 for Windows (IBM Corp., Armonk,

237 NY, USA). Two-way analysis of variance (ANOVA) was employed to evaluate the main effects
238 of storage time and treatment concentration, as well as their interactions. When significant
239 differences were detected ($p < 0.05$), post-hoc multiple comparisons were performed using
240 Duncan's multiple range test to identify specific treatment differences. Data are presented as mean
241 \pm standard deviation.

242

243 **Results and Discussion**

244 **Experiment I: Evaluation of antioxidant properties in four mushroom species**

245 **Total phenolic compounds**

246 The quantitative analysis of total phenolic content revealed significant variations among the four
247 mushroom species investigated (Table 2). Present results showed that oyster mushroom
248 (*Pleurotus ostreatus*) demonstrated the highest ($p < 0.5$) phenolic concentration (2.33g GAE/100g),
249 followed by white button mushroom (1.75g GAE/100g), king oyster (1.64g GAE/100g), and
250 shiitake (1.60g GAE/100g). High contents of phenolic compounds in foods have been associated
251 with high antioxidant capacities (Jacobo-Velázquez & Cisneros-Zevallos, 2009). According to
252 Silva et al. (2025), the total phenolic content of the five mushroom species *Lentinula edodes*,
253 *Pleurotus ostreatus*, *Hericium erinaceus*, and *Agaricus bisporus* ranged from 22.3 to 46.2 mg
254 GAE/100g FW. Among the evaluated species, *Agaricus varieties* exhibited the highest TPC values,
255 while *LE* showed a significantly lower phenolic content ($p < 0.05$). Diamantopoulou et al. (2023)
256 reported that *P. ostreatus* strains produced a satisfactory amount of TPC (10.41–70.67 mg GAE/g
257 d.w.). Kalogeropoulos et al. (2013) revealed that the total phenolic content of mushroom extracts
258 ranged from 6.0 to 20.8 mg GAE/100 g FW in wild edible mushrooms species (*Lactarius*
259 *deliciosus*, *Lactarius sanguifluus*, *Lactarius semisanguifluus*, *Russula delica*, *Suillus bellinii*).

260 These findings align with previous investigations that have shown phenolic compounds serve as
261 primary determinants of antioxidant efficacy in mushroom species (Cheung et al., 2003; Palacios
262 et al., 2011). Palacios et al. (2011) reported that *P. ostreatus* inhibits 36% of the lipid oxidation.
263 Phenolic compounds are responsible for the antioxidant activity; however, the inhibition extent
264 does not correlate with either the total phenolic amount or the flavonoid content, which may
265 indicate that each phenolic compound or a group of them must possess different antioxidant
266 activity. The elevated phenolic content in oyster mushrooms can be attributed to their unique
267 biosynthetic pathways that produce diverse phenolic metabolites, including flavonoids, phenolic
268 acids, and polyphenolic compounds (Gąsecka et al., 2016). These bioactive constituents function
269 synergistically to enhance free radical scavenging capacity and provide protective effects against
270 oxidative stress (Jayakumar et al., 2008; Gebru et al., 2024). The observed variations in phenolic

271 content among species reflect genetic differences in secondary metabolite production and
272 environmental adaptation mechanisms (Radzki et al., 2023). Otherwise, differences can also be
273 explained by other factors, like geographical location, harvest conditions, harvesting period,
274 storage conditions, substrate composition, extraction procedure, expression on a fresh weight
275 basis or dry weight, and the solvent used, which are the most well-known factors to induce
276 variations (Kim et al. 2013).

277

278 **DPPH radical scavenging activity**

279 The DPPH assay showed that oyster mushroom powder exhibited superior free radical scavenging
280 activity compared to other tested species (Table 3). At 1% concentration, oyster mushroom
281 achieved 52.5% DPPH radical scavenging activity, followed by king oyster mushroom (49.9%),
282 shiitake mushroom (41.7%), and white button mushroom (40.8%). Similar results were reported
283 by Wong et al. (2013), who found that mushroom extracts exhibited DPPH radical scavenging
284 activity in a concentration-dependent manner over the range of 5 to 50 mg/ml. *A. polytricha* was
285 found to have the highest DPPH scavenging activity (79%), followed by *P. eryngii* (52%) and *H.*
286 *tessulatus* (43%), while *F. velutipes* and *P. florida* possessed 23%, compared to a standard
287 concentration of 50 mg/ml. The enhanced scavenging capacity is consistent with the elevated
288 phenolic content, confirming the mechanistic relationship between phenolic compounds and
289 antioxidant functionality. This observation supports earlier findings indicating that mushroom-
290 derived phenolics effectively neutralize DPPH radicals through hydrogen atom donation and
291 electron transfer mechanisms (Ferreira et al., 2009). Although oyster mushroom powder exhibited
292 lower DPPH scavenging activity than ascorbic acid, it demonstrated effective antioxidant activity,
293 consistent with Yim et al. (2010), suggesting its potential as a natural alternative to conventional
294 preservatives. The concentration-dependent response observed in all species indicates that
295 antioxidant activity can be optimized through controlled dosage applications in food systems.

296

297 **Iron chelating capacity and reducing power**

298 The metal chelating activities showed that oyster mushroom powder exhibited the highest metal
299 activities (95.9%), at 1% concentration, followed by king oyster mushroom (90.5%), shiitake
300 mushroom (82.0%), and white button mushroom (79.8%) (Table 3). Present results support pre-
301 vious findings of Wong et al. (2013) reported that metal chelating activities occurred in a concen-
302 tration-dependent manner, at an extract concentration of 50 mg/ml, *A. polytricha* showed the
303 highest metal activities (100%), followed by *F. velutipes*, *H. tessulatus* and *P. florida* (93.3, 90.4,

304 and 89.1%, respectively). The lowest activity was observed 4.4-fold lower compared to that of
305 the highest one.

306 Iron chelating capacity revealed that oyster mushroom powder possessed exceptional iron
307 sequestration capacity, effectively inhibiting metal-catalyzed oxidation reactions. This property is
308 particularly significant in meat processing applications, where iron and other transition metals
309 accelerate lipid oxidation through Fenton reaction mechanisms (Goswami et al., 2021). The
310 superior chelating activity of oyster mushrooms can be attributed to their phenolic compounds,
311 which contain multiple hydroxyl groups capable of forming stable coordination complexes with
312 metal ions (Alam et al., 2010; Qin et al., 2023).

313 The reducing power evaluation demonstrated that oyster mushroom powder exhibited substantial
314 electron-donating capacity (0.40 OD at 1% concentration) (Table 3), indicating its ability to
315 terminate radical chain reactions by converting oxidizing species to more stable forms (Abdullah
316 et al., 2011). This mechanism complements the radical scavenging activity and contributes to the
317 overall antioxidant protection provided by mushroom-derived compounds. Based on research
318 results, the oyster mushrooms with the highest antioxidant activity were selected for further
319 product formulations. Oyster mushrooms were added to ham in varying concentrations: 0.5%,
320 1%, and 3%.

321

322 **Experiment II: Quality characteristics of pork ham enhanced with oyster mushroom 323 powder**

324 **Proximate composition**

325 The antioxidant activities of mushroom powders were first evaluated at concentrations of 0.05%,
326 0.1%, 0.25%, 0.5%, and 1%. Among the four species tested, oyster mushroom (*Pleurotus
327 ostreatus*) exhibited the highest antioxidant efficacy. Based on these results, oyster mushroom
328 powder was incorporated into pork ham to assess its quality properties, then addition levels of
329 1%, 2%, and 3% were selected for subsequent analyses.

330 Proximate analysis revealed that oyster mushroom powder addition enhanced the nutritional
331 profile of pork ham products (Table 4). There were differences in the percentages of moisture and
332 protein between the treatments ($p<0.05$). Moisture content showed variation among treatments:
333 control samples contained $51.9\pm0.71\%$, M1 contained $52.1\pm0.44\%$, M2 showed the highest
334 moisture at $52.4\pm0.56\%$, while M3 exhibited a notable decrease to $49.8\pm0.98\%$. This reduction in
335 M3 may be attributed to the higher dietary fiber content of mushroom powder, which could alter
336 the water-binding capacity of the meat matrix.

337 Protein content ranged from 29.8% to 31.6% across treatments, with control at $31.5\pm0.27\%$, M1
338 at $31.6\pm0.87\%$, M2 at $29.8\pm0.25\%$, and M3 at $30.7\pm0.82\%$. While M1 showed numerically higher
339 protein content, the differences among control, M1, and M3 were not substantial enough to
340 indicate a clear trend.

341 Fat content was increased with mushroom powder addition, ranging from $14.0\pm0.73\%$ in control
342 to $16.7\pm1.18\%$ in M3, with M1 at $13.1\pm0.87\%$ and M2 at $15.0\pm0.46\%$. Ash content remained
343 relatively stable across all treatments, ranging from $2.49\pm0.07\%$ in control to $2.89\pm0.10\%$ in M3.

344 These findings are consistent with Stefanello et al. (2015), who reported that mushroom
345 incorporation in meat products resulted in decreased moisture content (61.2-57.7%), variable
346 protein levels (18.98-21.18%), and relatively stable fat (12.3-13.8%) and ash (3.5-3.8%) contents.

347

348 pH

349 The incorporation of oyster mushroom powder significantly influenced the pH profile of pork
350 ham products throughout the 49-day storage period (Table 5). Samples with higher mushroom
351 powder concentrations maintained more stable pH values: M3 (3%) showed 6.33 ± 0.01 , M2 (1%)
352 6.36 ± 0.05 , M1 (0.5%) 6.39 ± 0.01 , and the control 6.38 ± 0.05 . During storage, pH increased from
353 day 0 (6.24 ± 0.01) to day 21 (6.40 ± 0.01) and then remained relatively stable, suggesting that
354 bioactive compounds in oyster mushrooms may modulate protein denaturation processes.

355 These results differ from previous studies using fermented mushrooms. Boylu et al. (2024)
356 reported pH decreases proportional to fermented oyster mushroom levels (25-50%) during 28-
357 day storage, while Fu et al. (2022) observed continuous pH decline with alternative mushroom
358 species. In contrast, fresh oyster mushroom powder maintained pH within the optimal range (6.2-
359 6.4), which favors color stability and inhibits spoilage. Choi et al. (2020) reported that winter
360 mushroom juice powder in beef products also stabilized pH without affecting sensory quality,
361 resulting in higher sensory scores than controls during 10-day storage.

362 The M3 treatment's pH range (6.24-6.40) is particularly favorable for myoglobin color stability,
363 as pH values in this range minimize metmyoglobin formation rates (Madhavi & Carpenter, 1993;
364 Hoa et al., 2021). Maintaining pH stability thus represents an advantage over fermented
365 mushroom preparations, providing antimicrobial protection and preserving color without
366 excessive acidification.

367

368 **Color**

369 The addition of oyster mushroom powder affected the visual appearance of pork ham products
370 (Table 5). Lightness (L*) decreased with increasing mushroom powder concentration. The control
371 maintained the highest L* values (68.9 ± 0.32 to 70.4 ± 0.33), peaking during mid-storage (days 14–
372 35) and slightly declining to 69.9 ± 0.20 at day 49. Mushroom-enriched treatments showed
373 progressive darkening with higher powder concentrations: M1 increased from 64.6 ± 0.22 to
374 68.0 ± 0.37 during days 28–35, then decreased to 65.8 ± 0.16 (1.86% net increase); M2 remained
375 relatively stable (63–65, 3.66% increase to 65.1 ± 0.58); M3 showed the lowest lightness
376 (57.1 ± 0.22 to 58.9 ± 0.10), stabilizing after day 21 with 3.15% total increase. Darkening is
377 attributed to natural pigments in oyster mushrooms—melanoidins, polyphenols, and carotenoids
378 (Torres-Martínez et al., 2022; Tiupova et al., 2025)—and Maillard reaction products formed
379 during processing (Zhang et al., 2022). Oxidative polymerization of phenolic compounds also
380 contributes to progressive browning (Bravo, 2020).

381 Redness (a*) increased with mushroom powder concentration. The control ranged 8.00 ± 0.08 to
382 9.15 ± 0.05 , while M1 ranged 8.74 ± 0.02 to 9.89 ± 0.04 , M2 9.00 ± 0.06 to 9.39 ± 0.09 , and M3
383 9.27 ± 0.09 to 9.59 ± 0.03 . Values remained stable over storage, indicating that antioxidant
384 compounds in oyster mushroom powder effectively inhibited myoglobin oxidation, preserving
385 redness. This contrasts with previous studies (Boylu et al., 2024; Fu et al., 2022), where a*
386 decreased with mushroom addition.

387 Yellowness (b*) increased with mushroom powder concentration. Control samples ranged
388 8.48 ± 0.09 to 9.58 ± 0.02 , M1 10.0 ± 0.15 to 10.9 ± 0.06 , M2 11.4 ± 0.09 to 12.1 ± 0.12 , and M3
389 12.2 ± 0.15 to 13.1 ± 0.14 . These results align with previous reports (Boylu et al., 2024; Fu et al.,
390 2022), confirming that mushroom pigments contribute to increased yellowness in meat products.

391

392 **Water-holding capacity (WHC)**

393 WHC measurements indicated that mushroom powder addition improved moisture retention in
394 processed meat products (Table 5). During storage (0–49 days), WHC values of all treatments
395 remained relatively stable, with only slight fluctuations observed. The control sample exhibited
396 the highest WHC (89.8–91.8%), peaking around day 21–28 and maintaining stability thereafter.
397 Mushroom-enriched treatments (M1–M3) showed comparable or slightly lower WHC values
398 (approximately 89.5–90.8%), with no significant decline during storage. Among them, M1
399 displayed the most consistent WHC profile, while M3 showed a minor reduction after day 28.
400 This enhancement can be attributed to the hydrocolloid properties of mushroom polysaccharides,

401 which interact with meat proteins to form more stable gel networks. The improved WHC
402 contributes to better textural properties and reduced cooking losses during thermal processing
403 (Pietrasik et al., 2005).

404 These results align with previous research demonstrating the functional benefits of mushroom
405 powder in meat products. Jung et al. (2022) reported that oyster mushroom powder (OMP) at 2%
406 concentration in emulsion-type sausages achieved the highest WHC and lowest cooking loss
407 compared to phosphate-free controls, attributing this improvement to interactions between
408 polysaccharides and proteins that stabilize emulsion structures. Similarly, Vargas-Sánchez et al.
409 (2018) found that dietary supplementation with mushroom powder significantly improved WHC
410 ($p<0.05$) in pork *Longissimus thoracis* and reduced drip loss during storage. The current study's
411 findings are consistent with these investigations, confirming that oyster mushroom
412 polysaccharides form hydrocolloid networks that effectively trap and retain moisture within meat
413 matrices.

414 However, the present study observed relatively high WHC values (89.8-90.8%) across all
415 treatments, including controls, suggesting that the processing parameters employed—such as
416 optimal salt concentration, pH conditions, and protein extraction—created favorable conditions
417 for water retention. The slight decrease in WHC with increasing mushroom powder concentration
418 (from 90.8% in control to 89.8% in M3) contrasts with Jung et al. (2022) findings where OMP
419 significantly enhanced WHC in phosphate-free formulations. This difference may be attributed to
420 variations in product formulation, processing methods, and the baseline WHC of control samples.
421 Nonetheless, the maintenance of WHC values above 89% in all treatments, combined with the
422 demonstrated antioxidant and color stability benefits of mushroom powder, supports its
423 application as a multifunctional natural additive in processed pork products.

424

425 **Texture profile analysis (TPA)**

426 Instrumental texture analysis revealed that oyster mushroom powder incorporation and storage
427 duration significantly influenced the textural characteristics of pork ham products (Table 5).
428 Storage duration demonstrated pronounced effects on textural parameters, with hardness
429 exhibiting a progressive increase from day 0 (2905.1 ± 92.6 g) to day 49 (3216.0 ± 32.7 g),
430 representing a 10.7% increase over the storage period with intermediate values showing gradual
431 progression through day 7 (3048.8 ± 342.7 g), day 14 (3064.3 ± 28.5 g), day 21 (3072.3 ± 44.6 g),
432 day 28 (3084.5 ± 44.0 g), day 35 (3148.1 ± 41.2 g), and day 42 (3164.0 ± 30.4 g), with this hardening
433 phenomenon intensifying after day 21 and being attributed to moisture migration and evaporation,
434 protein denaturation strengthening intermolecular bonds, and structural reorganization leading to

435 matrix compaction. This finding is consistent with the findings of Mounir et al. (2025), who
436 demonstrated that mushroom-derived ingredients can enhance the structural integrity of processed
437 meat products.

438 Deformation remained remarkably stable throughout storage at 4.98 ± 0.01 mm across all time
439 points, indicating that sample compression resistance was unaffected by storage duration.
440 Adhesiveness demonstrated a continuous declining pattern from 0.24 ± 0.02 mJ (day 0) to
441 0.16 ± 0.02 mJ (day 49), representing a 33.3% reduction, with intermediate decreases through day
442 7 (0.22 ± 0.02 mJ), day 14 (0.21 ± 0.02 mJ), day 21 (0.19 ± 0.02 mJ), day 28 (0.18 ± 0.02 mJ), and
443 day 35 (0.17 ± 0.02 mJ), suggesting progressive surface chemistry changes including protein
444 hydrolysis and lipid oxidation modifying surface properties, as noted by Stepanova and Akrashie
445 (2021) in their study of mushroom-enriched meat products during refrigerated storage.

446 Resilience showed an increasing trend from 0.27 ± 0.02 (day 0) to 0.31 ± 0.01 (day 49), representing
447 a 14.8% increase, with gradual progression through day 14 (0.28 ± 0.01), day 21 (0.29 ± 0.01), and
448 stabilization at 0.30 ± 0.01 from days 28-42, indicating enhanced protein cross-linking resistance
449 and moisture redistribution optimizing structural integrity during cold storage. Cohesiveness
450 increased from 0.54 ± 0.02 (day 0) to 0.59 ± 0.01 (day 49), showing a 9.3% increase with consistent
451 progression at each storage interval: day 7 (0.55 ± 0.01), day 14 (0.56 ± 0.02), day 21 (0.57 ± 0.02),
452 day 28 (0.57 ± 0.02), day 35 (0.58 ± 0.02), and day 42 (0.58 ± 0.02), suggesting strengthening of
453 intermolecular protein bonds and matrix compaction, which is consistent with Choi et al. (2020),
454 who reported 7-14% increases in cohesiveness during frankfurter storage, indicating that this
455 phenomenon is characteristic of processed meat products under refrigeration.

456 Springiness increased from 4.09 ± 0.03 mm (day 0) to 4.20 ± 0.02 mm (day 49), representing a 2.7%
457 increase with gradual progression through day 7 (4.09 ± 0.02 mm), day 14 (4.11 ± 0.03 mm), day
458 21 (4.13 ± 0.03 mm), day 28 (4.15 ± 0.02 mm), day 35 (4.16 ± 0.03 mm), and day 42 (4.18 ± 0.03 mm),
459 indicating slight improvement in structural elasticity. Gumminess exhibited an increasing trend
460 from 1544.6 ± 24.8 g (day 0) to 1761.8 ± 73.5 g (day 42), representing a 14.1% increase, before
461 declining slightly to 1750.9 ± 65.8 g (day 49), while chewiness followed a similar pattern,
462 increasing from 61.7 ± 1.99 mJ (day 0) to 72.0 ± 2.98 mJ (day 49), representing a 16.7% increase,
463 with intermediate values showing progressive increases through day 7 (62.7 ± 2.35 mJ), day 14
464 (64.1 ± 3.05 mJ), day 21 (66.1 ± 2.80 mJ), day 28 (66.9 ± 2.86 mJ), day 35 (68.5 ± 3.64 mJ), and day
465 42 (70.7 ± 4.42 mJ), with these increases in gumminess and chewiness reflecting the combined
466 effects of increasing hardness and cohesiveness during refrigerated storage, though Choi et al.
467 (2020) cautioned that excessive chewiness development during storage may result in undesirable
468 eating quality due to increased chewing requirements for consumers. Importantly, mushroom-
469 treated samples maintained superior textural stability during extended storage compared to

470 control samples, with mushroom-enriched formulations demonstrating more gradual textural
471 changes and better structure retention, which is attributed to the antioxidant compounds in oyster
472 mushroom powder that collectively mitigate protein oxidation and preserve structural integrity
473 throughout refrigerated storage, as confirmed by Fernandes et al. (2018), who demonstrated that
474 shiitake mushroom enrichment stabilized TPA parameters during storage by preserving protein
475 functionality through antioxidant protection mechanisms.

476

477 **Lipid oxidation**

478 The evaluation of lipid oxidation through TBARS and POV analyses provided critical insights
479 into the antioxidant efficacy of oyster mushroom powder in pork ham systems (Table 5). TBARS
480 values showed distinct patterns throughout storage. Initial TBARS values (day 0) were lowest in
481 control (0.02 ± 0.01 MDA mg/kg) and M1 (0.02 ± 0.01 MDA mg/kg), followed by M2 (0.03 ± 0.01
482 MDA mg/kg), while M3 showed notably higher initial values (0.09 ± 0.01 MDA mg/kg). During
483 storage, all treatments demonstrated progressive increases in TBARS formation. By day 49,
484 control samples reached 0.09 ± 0.01 MDA mg/kg, M1 reached 0.10 ± 0.01 MDA mg/kg, M2
485 reached 0.10 ± 0.01 MDA mg/kg, and M3 showed the highest final value at 0.17 ± 0.01 MDA mg/kg.
486 Notably, control and lower mushroom concentration treatments (M1 and M2) maintained TBARS
487 values below 0.10 MDA mg/kg throughout most of the storage period, remaining well below the
488 sensory detection threshold of 0.5-1.0 mg MDA/kg reported for meat products (Domínguez et al.,
489 2019). This oxidative protection mechanism aligns with findings by Tom et al. (2018), which
490 demonstrated that mushroom powder enhances the binding of sarcoplasmic proteins to lipid
491 oxidation intermediates, thereby inhibiting the formation of secondary oxidation products such as
492 aldehydes and ketones. The observed reduction in malondialdehyde formation suggests that
493 phenolic compounds effectively interrupt lipid peroxidation chain reactions through multiple
494 mechanistic pathways.

495 Stefanello et al. (2015) reported that *Agaricus blazei* mushroom powder added at concentrations
496 of 1- 4% to pork sausages exhibited the lowest lipid oxidation up to 35 days of storage at 4 °C.
497 Kim et al. (2013) demonstrated that phenolic compounds are among the bioactive constituents
498 from plant sources that can protect meat products against lipid oxidation damage when present at
499 suitable concentrations, though the protective effects observed in mushroom-enriched products
500 likely result from synergistic interactions among multiple bioactive classes including phenolic
501 compounds, polysaccharides (β -glucans), ergosterol, terpenoids, and other antioxidant
502 constituents that collectively contribute to oxidative stability during storage.

503 POV values revealed that mushroom powder incorporation significantly reduced primary

504 oxidation product formation throughout the storage period. Initial POV values at day 0 showed
505 control at 23.2 ± 4.09 mg/kg, M1 at 22.6 ± 4.06 mg/kg, M2 at 21.4 ± 4.23 mg/kg, and M3 at
506 19.6 ± 4.58 mg/kg, demonstrating a concentration-dependent antioxidant effect with M3 showing
507 15.5% lower POV than control, which aligns with Van Ba et al. (2017), who reported that shiitake
508 mushroom extracts significantly reduced lipid peroxidation in fresh pork sausages through
509 antioxidant protection mechanisms. During storage, POV values progressively increased in all
510 treatments, with control samples reaching 33.0 ± 4.26 mg/kg by day 49 (42.2% increase), while
511 mushroom-treated samples showed more moderate increases: M1 reaching 31.3 ± 4.32 mg/kg
512 (38.5% increase), M2 reaching 30.2 ± 4.09 mg/kg (41.1% increase), and M3 reaching 30.0 ± 4.76
513 mg/kg (53.1% increase from initial value, though maintaining lower absolute values throughout
514 storage). This pattern is consistent with Kumar et al. (2015), who observed similar POV
515 progression in button mushroom-enriched chicken nuggets during refrigerated storage, with
516 initial strong protection gradually diminishing over extended storage periods. Notably, by day 49,
517 M3 treatment maintained POV values 9.1% lower than control, indicating sustained antioxidant
518 protection throughout the 49-day refrigerated storage period.

519 The protective mechanism can be attributed to multiple bioactive constituents in oyster mushroom,
520 as Kim et al. (2011) demonstrated that phenolic compounds are among the bioactive constituents
521 from plant sources that can protect meat products against lipid oxidation damage when present at
522 suitable concentrations, though the protective effects observed in mushroom-enriched products
523 likely result from synergistic interactions among multiple bioactive classes including phenolic
524 compounds, polysaccharides (β -glucans), ergosterol, terpenoids, and other antioxidant
525 constituents that collectively contribute to oxidative stability during storage (Itrat et al., 2025).
526 The concentration-dependent response confirms that antioxidant activity can be optimized
527 through controlled mushroom powder dosage (Tiupova et al., 2025), providing practical guidance
528 for industrial implementation, with Mounir et al. (2025) reporting similar findings that oyster
529 mushroom incorporation provided optimal balance between antioxidant protection and product
530 quality attributes in chicken burger formulations, though the protective effect was most
531 pronounced during early to mid-storage periods (days 0-35) before converging toward similar
532 values in extended storage.

533

534 **Microbiological analysis**

535 Total aerobic plate count and coliform enumeration results demonstrated that oyster mushroom
536 powder addition contributed to enhanced microbiological stability during refrigerated storage. All
537 treatments showed microbiological counts below detection limits (<2 Log CFU/g) for both total

538 plate count and coliform bacteria throughout the 49-day storage period. All control and treatments
539 samples showed microbiological counts below detection limits (<2 Log CFU/g) for both total
540 plate count and coliform bacteria throughout the 49-day storage period. In this study, samples
541 stored under aerobic packaging conditions in PET trays and sealed with PP film at 4 °C showed
542 no detectable microbial growth throughout the entire storage period. Pachekrepapol et al. (2022)
543 reported detectable microbial levels when mushroom powder was added to meat products,
544 however, such growth did not occur under the controlled conditions applied in the present work,
545 suggesting that oyster mushroom powder can be incorporated without compromising
546 microbiological safety. The antimicrobial effects can be attributed to bioactive compounds present
547 in oyster mushrooms, including phenolic acids, terpenoids, and chitin-derived compounds that
548 exhibit broad-spectrum antimicrobial activity (Bamisi et al., 2024). This observation supports the
549 multifunctional nature of mushroom-derived ingredients, providing both antioxidant and
550 antimicrobial protection in processed meat systems. The extended shelf-life observed in
551 mushroom-treated samples reflects the synergistic effects of antioxidant protection and
552 antimicrobial activity, demonstrating the potential for mushroom powder to serve as a natural
553 preservation system. These findings align with previous research demonstrating that oyster
554 mushroom (*Pleurotus sajur-caju*) powder incorporation in chicken sausages effectively reduced
555 TBARS, volatile basic nitrogen, and total bacterial counts during refrigerated storage, resulting
556 in shelf-life extension (Rakasivi & Chin, 2022). Furthermore, Jung et al. (2022) confirmed that
557 oyster mushroom (*Pleurotus ostreatus*) powder enhanced the stability and quality characteristics
558 of emulsion-type sausages, supporting its application as a multifunctional natural preservative in
559 processed meat products (Ibrahim & Huda-Faujan, 2023).

560

561

562

563 **Conclusion**

564 This study evaluated the antioxidant potential of four mushroom species and demonstrated the
565 efficacy of oyster mushroom powder as a natural preservative in pork ham. Oyster mushroom
566 (*Pleurotus ostreatus*) exhibited the strongest antioxidant capacity, showing the highest total
567 phenolic content (2.33 ± 0.18 g GAE/100 g), 53.6% DPPH scavenging activity, 95.9% iron-
568 chelating ability, and a reducing power of 0.40 absorbance units at 1% concentration.
569 Incorporation of oyster mushroom powder (0.5–3%) significantly enhanced oxidative stability in
570 pork ham. The 3% treatment effectively reduced lipid oxidation (POV: 26.1 ± 3.22 mg/kg vs.
571 control: 29.8 ± 3.13 mg/kg) and maintained TBARS values below detection thresholds throughout
572 the 49-day storage. Although higher concentrations slightly decreased lightness (L^* 58.2 vs.
573 control 69.8), the improved preservation benefits outweighed these color changes.
574 Microbiological analysis confirmed strong antimicrobial protection, with bacterial counts
575 remaining below detection limits (<2 Log CFU/g) in all treatments. Taken together, these results
576 indicate that oyster mushroom powder not only provides antioxidant and antimicrobial protection
577 but also contributes to the overall storage stability of pork ham, supporting its use as a natural
578 preservative in processed meat products. Overall, these findings validate oyster mushroom
579 powder as a promising natural alternative to synthetic preservatives, providing a scientific
580 foundation for its industrial application and supporting the development of healthier and more
581 sustainable meat products.

582

583 **Acknowledgement**

584 This work was supported by a research grant from Hankyong National University in the year of
585 2024.

586 **References**

587 Abdullah N, Ismail SM, Aminudin N, Shuib AS, Lau BF. 2011. Evaluation of selected culinary-medicinal
588 mushrooms for antioxidant and ACE inhibitory activities. *J Evidence-Based Complementary
589 Altern Med* 2012:464238. <https://doi.org/10.1155/2012/464238>

590 Al Qutaibi M, Kagne SR. 2024. Exploring the phytochemical compositions, antioxidant activity, and
591 nutritional potentials of edible and medicinal mushrooms. *Int J Microbiol* 2024:6660423.
592 <https://doi.org/10.1155/2024/6660423>

593 Alam N, Yoon KN, Lee KR, Shin PG, Cheong JC, Yoo YB, Shim MJ, Lee MW, Lee UY, Lee TS. 2010.
594 Antioxidant activities and tyrosinase inhibitory effects of different extracts from *Pleurotus
595 ostreatus* fruiting bodies. *Mycobiology*, 38(4):295-301.
596 <https://doi.org/10.4489/MYCO.2010.38.4.295>

597 Allam SFM, Mohamed MO. 2023. Nutritional value, antioxidant activity, and sensory evaluation of edible
598 mushroom (*Pleurotus ostreatus*) as a supplementation to create healthier meat products. *Res J
599 Specif Educ* 1(73):1–25.

600 AOAC. 1995. Official method of analysis 15th ed, Association of Official Analytical Chemists, Washington,
601 DC.

602 Bamisi OE, Ogidi CO, Akinyele BJ. 2024. Antimicrobial metabolites from Probiotics, *Pleurotus ostreatus*
603 and their co-cultures against foodborne pathogens isolated from ready-to-eat foods. *Ann Microbiol*
604 74(1):31. <https://doi.org/10.1186/s13213-024-01776-5>

605 Banerjee DK, Das AK, Banerjee R, Pateiro M, Nanda PK, Gadekar YP, Biswas S, McClements DJ, Lorenzo
606 JM. 2020. Application of enoki mushroom (*Flammulina Velutipes*) stem wastes as functional
607 ingredients in goat meat nuggets. *Foods* 9(4):432. <https://doi.org/10.3390/foods9040432>

608 Barros L, Ferreira MJ, Queiros B, Ferreira ICFR, Baptista P. 2007. Total phenols, ascorbic acid, β -carotene
609 and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. *Food
610 Chem* 103(2):413-419. <https://doi.org/10.1016/j.foodchem.2006.07.038>

611 Boylu M, Hitka G, Kenesei G. 2024. Sausage quality during storage under the partial substitution of meat
612 with fermented oyster mushrooms. *Foods* 13(13):2115. <https://doi.org/10.3390/foods13132115>

613 Bravo C. 2020. Geochemical characterization and redox properties of humic substances in lagoon
614 environments. Doctoral thesis, Università degli Studi di Trieste. Available from:
615 <https://hdl.handle.net/11368/2961326>

616 Cheung LM, Cheung PCK, Ooi VEC. 2003. Antioxidant activity and total phenolics of edible mushroom
617 extracts. *Food Chem* 81(2):249-255. [https://doi.org/10.1016/S0308-8146\(02\)00419-3](https://doi.org/10.1016/S0308-8146(02)00419-3)

618 Choi YS, Jo K, Lee S, Yong HI, Jung S. 2020. Quality characteristics of the enhanced beef using winter
619 mushroom juice. *J Anim Sci Technol* 62(3):396. [10.5187/jast.2020.62.3.396](https://doi.org/10.5187/jast.2020.62.3.396)

620 Ciobanu MM, Flocea EI, Boișteanu PC. 2024. The impact of artificial and natural additives in meat products
621 on neurocognitive food perception: A narrative review. *Foods* 13(23):3908.

622 Coelho E, Rocha MAM, Saraiva JA, Coimbra MA. 2014. Microwave superheated water and dilute alkali
623 extraction of brewers' spent grain arabinoxylans and arabinoxylo-oligosaccharides.
624 *Carbohydr Polym* 99:415-422. <https://doi.org/10.1016/j.carbpol.2013.09.003>

625 Diamantopoulou P, Fourtaka K, Melanouri EM, Dedousi M, Diamantis I, Gardeli C, Papanikolaou S. 2023.
626 Examining the impact of substrate composition on the biochemical properties and antioxidant
627 activity of *Pleurotus* and *Agaricus* mushrooms. *Fermentation* 9(7):689.

628 Domínguez R, Pateiro M, Gagaoua M, Barba FJ, Zhang W, Lorenzo JM. 2019. A comprehensive review
629 on lipid oxidation in meat and meat products. *Antioxidants* 8(10):429.
630 <https://doi.org/10.3390/antiox8100429>

631 Dubost NJ, Beelman RB, Royse DJ. 2007. Influence of selected cultural factors and postharvest storage on
632 ergothioneine content of common button mushroom *Agaricus bisporus* (J. Lge) Imbach
633 (Agaricomycetidae). *Int J Med Mushrooms* 9(2). <https://doi.org/10.1615/IntJMedMushr.v9.i2.70>

634 Effiong ME, Umeokwochi CP, Afolabi IS, Chinedu SN. 2024. Assessing the nutritional quality of *Pleurotus
635 ostreatus* (oyster mushroom). *Front Nutr* 10:1279208. <https://doi.org/10.3389/fnut.2023.1279208>

636 Ferreira ICFR, Barros L, Abreu RMV. 2009. Antioxidants in wild mushrooms. *Curr Med
637 Chem* 16(12):1543-1560. <https://doi.org/10.2174/092986709787909587>

638 Finimundy TC, Dillon AJP, Henriques JAP, Ely MR. 2014. A review on general nutritional compounds and
639 pharmacological properties of the *Lentinula edodes* mushroom. *Food Nutr Sci* 5(12)

640 <http://dx.doi.org/10.4236/fns.2014.512119>

641 Fu Q, Shi H, Hu D, Cheng J, Chen S, Ben A. 2022. Pork longissimus dorsi marinated with edible mushroom
642 powders: Evaluation of quality traits, microstructure, and protein degradation. *Food Res Int*
643 158:111503. <https://doi.org/10.1016/j.foodres.2022.111503>

644 Rakasivi KGJ, Chin KB. 2022. Evaluation of product quality of chicken sausages with added cinnamon
645 (*Cinnamomum cassia*) and mushroom (*Pleurotus sajur-caju*) powders at various concentrations. *J*
646 *Food Process Preserv* 46(11):e16958. <https://doi.org/10.1111/jfpp.16958>

647 Gąscka M, Magdziak Z, Siwulski M, Mleczek M. 2018. Profile of phenolic and organic acids, antioxidant
648 properties and ergosterol content in cultivated and wild growing species of *Agaricus*. *Eur Food*
649 *Res Technol*. 244(2):259-268 <https://doi.org/10.1007/s00217-017-2952-9>

650 Gąscka M, Mleczek M, Siwulski M, Niedzielski P. 2016. Phenolic composition and antioxidant properties
651 of *Pleurotus ostreatus* and *Pleurotus eryngii* enriched with selenium and zinc. *Eur Food Res*
652 *Technol* 242(5):723-732. <https://doi.org/10.1007/s00217-015-2580-1>

653 Gebru H, Faye G, Belete T. 2024. Antioxidant capacity of *Pleurotus ostreatus* (Jacq.) P. Kumm influenced
654 by growth substrates. *AMB Express* 14(1):73. <https://doi.org/10.1186/s13568-024-01698-0>

655 Goswami B, Majumdar S, Das A, Barui A, Bhowal J. 2021. Evaluation of bioactive properties of *Pleurotus*
656 *ostreatus* mushroom protein hydrolysate of different degree of hydrolysis. *Lwt* 149:111768.
657 <https://doi.org/10.1016/j.lwt.2021.111768>

658 Hamad D, El-Sayed H, Ahmed W, Sonbol H, Ramadan MAH. 2022. GC-MS analysis of potentially volatile
659 compounds of *Pleurotus ostreatus* polar extract: in vitro antimicrobial, cytotoxic,
660 immunomodulatory, and antioxidant activities. *Front Microbiol* 13:834525.
661 <https://doi.org/10.3389/fmicb.2022.834525>

662 Hoa VB, Cho SH, Seong PN, Kang S M, Kim YS, Moon SS, Choi JH, Seol KH. 2021. The significant
663 influences of pH, temperature and fatty acids on meat myoglobin oxidation: a model study. *J Food*
664 *Sci Technol* 58(10):3972-3980. <https://doi.org/10.1007/s13197-020-04860-1>

665 Huang SJ, Tsai SY, Mau JL. 2006. Antioxidant properties of methanolic extracts from *Agrocybe cylindracea*.
666 *LWT-Food Sci Technol* 39(4):379-387. <https://doi.org/10.1016/j.lwt.2005.02.012>

667 Ibrahim HSS, Huda-Faujan N. 2023. Potential use of underutilised mushroom stems in meat products and
668 meat analogues: A mini review. *Malays J Sci Health Technol.* 9(2):147-152.
669 <https://doi.org/10.33102/mjosht.v9i2.334>

670 Itrat N, Hasanath SAF, Ali A. 2025. Mushrooms as natural antioxidants and their role in oxidative stress
671 management. *Mushroom Bioactives: Bridging Food, Biotechnology, and Nanotechnology for*
672 *Health and Innovation*, 45-67.

673 Jacobo-Velázquez DA, Cisneros-Zevallos L. 2009. Correlations of antioxidant activity against phenolic
674 content revisited: a new approach in data analysis for food and medicinal plants. *J Food*
675 *Sci* 74(9):R107-R113. <https://doi.org/10.1111/j.1750-3841.2009.01352.x>

676 Jayakumar T, Sakthivel M, Thomas PA, Geraldine P. 2008. *Pleurotus ostreatus*, an oyster mushroom,
677 decreases the oxidative stress induced by carbon tetrachloride in rat kidneys, heart and
678 brain. *Chem.-Biol Interact* 176(2-3):108-120. <https://doi.org/10.1016/j.cbi.2008.08.006>

679 Jayasuriya WJABN, Handunnetti SM, Wanigatunge CA, Fernando GH, Abeytunga DTU, Suresh TS. 2020.
680 Anti-inflammatory activity of *Pleurotus ostreatus*, a culinary medicinal mushroom, in Wistar
681 rats. *Evidence-Based Complementary and Alternative Medicine* 2020:6845383.
682 <https://doi.org/10.1155/2020/6845383>

683 Jung DY, Lee HJ, Shin DJ, Kim CH, Jo C. 2022. Mechanism of improving emulsion stability of emulsion-
684 type sausage with oyster mushroom (*Pleurotus ostreatus*) powder as a phosphate
685 replacement. *Meat Sci* 194:108993. <https://doi.org/10.1016/j.meatsci.2022.108993>

686 Kalogeropoulos N, Yanni AE, Koutrotsios G, Aloupi M. 2013. Bioactive microconstituents and antioxidant
687 properties of wild edible mushrooms from the island of Lesvos, Greece. *Food Chem Toxicol*
688 55:378-385. <https://doi.org/10.1016/j.fct.2013.01.010>

689 Kim IS, Yang MR, Lee OH, Kang SN. 2011. Antioxidant activities of hot water extracts from various
690 spices. *Int J Mol Sci* 12(6):4120 4131. <https://doi.org/10.3390/ijms12064120>

691 Kim SJ, Cho AR, Han J. 2013. Antioxidant and antimicrobial activities of leafy green vegetable extracts
692 and their applications to meat product preservation. *Food Control* 29(1):112-120.
693 <https://doi.org/10.1016/j.foodcont.2012.05.060>

694 Kumar Y, Yadav DN, Ahmad T, Narsaiah K. 2015. Recent trends in the use of natural antioxidants for meat

695 and meat products. *Compr Rev Food Sci Food Saf* 14(6):796-812. <https://doi.org/10.1111/1541-4337.12156>

696

697 Le K, Chiu F, Ng K. 2007. Identification and quantification of antioxidants in *Fructus lycii*. *Food Chem* 105(1):353-363. <https://doi.org/10.1016/j.foodchem.2006.11.063>

698

699 Lin JY, Tang CY. 2007. Determination of total phenolic and flavonoid contents in selected fruits and 700 vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. *Food Chem* 101(1):140-147 <https://doi.org/10.1016/j.foodchem.2006.01.014>

701

702 Madhavi DL, Carpenter CE. 1993. Aging and processing affect color, metmyoglobin reductase and oxygen 703 consumption of beef muscles. *J Food Sci* 58(5):939-942. <https://doi.org/10.1111/j.1365-2621.1993.tb06083.x>

704

705 Mohd Zaini NA, Azizan NAZ, Abd Rahim MH, Jamaludin AA, Raposo A, Raseetha S, Wan-Mohtar 706 WAAQI. 2023. A narrative action on the battle against hunger using mushroom, peanut, and 707 soybean-based wastes. *Front Public Health* 11:1175509. 708 <https://doi.org/10.3389/fpubh.2023.1175509>

709 Mounir S, Mohamed R, Sunooj KV, El-Saidy S, Farid E. 2025. Assessing the effects of partially substituting 710 chicken breast meat with oyster mushroom stalk powder on the quality attributes of mushroom- 711 chicken burgers. *Sci Rep* 15(1):4361. <https://doi.org/10.1038/s41598-025-86127-3>

712 Pachekrepapol U, Thangrattana M, Kitikangsadan A. 2022. Impact of oyster mushroom (*Pleurotus* 713 *ostreatus*) on chemical, physical, microbiological and sensory characteristics of fish burger 714 prepared from salmon and striped catfish filleting by-product. *Int J Gastron Food Sci* 30:100598. 715 <https://doi.org/10.1016/j.ijgfs.2022.100598>

716 Palacios I, Lozano M, Moro C, D'Arrigo M, Rostagno MA, Martínez JA, García-Lafuente A, Guillamón E, 717 Villares A. 2011. Antioxidant properties of phenolic compounds occurring in edible 718 mushrooms. *Food chem* 128(3):674-678. <https://doi.org/10.1016/j.foodchem.2011.03.085>

719 Pietrasik Z, Jarmoluk A, Shand PJ. 2005. Textural and hydration properties of pork meat gels processed 720 with non-muscle proteins and carrageenan. *Pol J Food Nutr. Sci* 14/55(2):145–150

721 Qin J, Guo N, Yang J, Chen Y. 2023. Recent advances of metal–polyphenol coordination polymers for 722 biomedical applications. *Biosensors* 13(8):776. <https://doi.org/10.3390/bios13080776>

723 Radzki W, Tutaj K, Skrzypczak K, Michalak-Majewska M, Gustaw W. 2023. Ethanolic extracts of six 724 cultivated mushrooms as a source of bioactive compounds. *Appl Sci* 14(1):66. 725 <https://doi.org/10.3390/app14010066>

726 Rahimah SB, Djunaedi DD, Soeroto AY, Bisri T. 2019. The phytochemical screening, total phenolic 727 contents and antioxidant activities in vitro of white oyster mushroom (*Pleurotus ostreatus*) 728 preparations. *Maced J Med Sci* 7(15):2404-2412. <https://doi.org/10.3889/oamjms.2019.741>

729 Sasse A, Colindres P, Brewer M S. 2009. Effect of natural and synthetic antioxidants on the oxidative 730 stability of cooked, frozen pork patties. *J Food Sci* 74(1):S30-S35.

731 Shantha NC, Decker EA. 1994. Rapid, sensitive, iron-based spectrophotometric methods for determination 732 of peroxide values of food lipids. *J AOAC int* 77(2):421-424. 733 <https://doi.org/10.1093/jaoac/77.2.421>

734 Silva M, Lageiro M, Ramos AC, Reboredo FH, Gonçalves EM. 2025. Cultivated mushrooms: A 735 comparative study of antioxidant activity and phenolic content. *Biol Life Sci Forum* 40(1):13. 736 <https://doi.org/10.3390/blsf2024040013>

737 Sinnhuber RO, Yu TC. 1977. The 2-thiobarbituric acid reaction, an objective measure of the oxidative 738 deterioration occurring in fats and oils. *J Jpn Oil Chem Soc* 26(5):259-267. 739 <https://doi.org/10.5650/jos1956.26.259>

740 Stefanello FS, Cavalheiro CP, Lüdtke FL, Silva MDSD, Fries LLM, Kubota EH. 2015. Oxidative and 741 microbiological stability of fresh pork sausage with added sun mushroom powder. *Cienc 742 Agrotecnol* 39(4):381-389. <https://doi.org/10.1590/S1413-70542015000400009>

743 Stepanova T, Akrashie NA. 2021. Study of organoleptic and technological properties of minced meat 744 products with addition of mushroom powder. *BIO Web Conf* 30(3):01020. 745 <https://doi.org/10.1051/bioconf/20213001020>

746 Tiupova A, Olędzki R, Harasym J. 2025. Physicochemical, functional, and antioxidative characteristics of 747 oyster mushrooms. *Appl Sci* 15(3):1655. <https://doi.org/10.3390/app15031655>

748 Tom N, Alnoumani HA, Were L. 2018. Interactions between mushroom powder, sodium chloride, and 749 bovine proteins and their effects on lipid oxidation products and consumer

750 acceptability. LWT 98:219-224. <https://doi.org/10.1016/j.lwt.2018.08.044>

751 Torres-Martínez BDM, Vargas-Sánchez RD, Torrescano-Urrutia GR, González-Ávila M, Rodríguez-
752 Carpena JG, Huerta-Leidenz N, Pérez-Alvarez JA, Fernández-López J, Sánchez-Escalante, A.
753 2022. Use of *Pleurotus ostreatus* to enhance the oxidative stability of pork patties during storage
754 and in vitro gastrointestinal digestion. Foods 11(24):4075. <https://doi.org/10.3390/foods11244075>

755 Van Ba H, Seo HW, Cho SH, Kim YS, Kim JH, Ham JS, Park BY, Pil-Nam, S. (2017). Effects of extraction
756 methods of shiitake by-products on their antioxidant and antimicrobial activities in fermented
757 sausages during storage. Food Control 79:109-118.

758 Wierbicki E, Deatherage FE. 1958. Water content of meats, determination of water-holding capacity of
759 fresh meats. J Agric Food Chem 6(5):387-392. <https://doi.org/10.1021/jf60087a011>

760 Wong FC, Chai TT, Tan SL, Yong AL. 2013. Evaluation of bioactivities and phenolic content of selected
761 edible mushrooms in Malaysia. Trop J Pharm Res 12(6):1011-1016.
762 <https://doi.org/10.4314/tjpr.v12i6.21>

763 Xu X, Liu A, Hu S, Ares I, Martínez-Larrañaga MR, Wang X., Martínez M, , Anadón A, Martínez MA.
764 2021. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food
765 Chem 353:129488

766 Yahia EM, Gutiérrez-Orozco F, Moreno-Pérez MA. 2017. Identification of phenolic compounds by liquid
767 chromatography-mass spectrometry in seventeen species of wild mushrooms in Central Mexico
768 and determination of their antioxidant activity and bioactive compounds. Food Chem 226:14-22.
769 <https://doi.org/10.1016/j.foodchem.2017.01.044>

770 Yim HS, Chye FY, Tan CT, Ng YC, Ho CW. 2010. Antioxidant activities and total phenolic content of
771 aqueous extract of *Pleurotus ostreatus* (cultivated oyster mushroom). Mal J Nutr 16(2):281-291.

772 Zhang Y, Wu X, Huang C, Zhang Z, Gao W. 2022. Isolation and identification of pigments from oyster
773 mushrooms with black, yellow and pink caps. Food Chem 372:131171.
774 <https://doi.org/10.1016/j.foodchem.2021.131171>

775

Table 1. Formulation of pork ham with oyster mushroom powder

Ingredients	Concentration (%)			
	CTL ¹⁾	M1	M2	M3
Pork ham	64.9	64.4	63.9	61.9
Pork backfat	20.0	20.0	20.0	20.0
Water	8.25	8.25	8.25	8.25
NaCl	1.2	1.2	1.2	1.2
Sugar	1.0	1.0	1.0	1.0
Sodium erythorbate	0.05	0.05	0.05	0.05
Pickling salt	0.3	0.3	0.3	0.3
Phosphate	0.3	0.3	0.3	0.3
Starch	1.0	1.0	1.0	1.0
Spices	1.0	1.0	1.0	1.0
Cheese powder	2.0	2.0	2.0	2.0
Oyster mushroom	-	0.5	1.0	3.0
Total	100.0	100.0	100.0	100.0

¹⁾CTL, oyster mushroom 0%; M1, oyster mushroom 0.5%; M2, oyster mushroom 1%; M3, oyster mushroom 3%.

778
779

Table 2. Results of total phenolic contents (g/100 g) of mushroom powder

Parameter	Treatments ¹⁾			
	W	K	S	O
Total phenolic contents (g/100g)	1.75 ^b ±0.16	1.64 ^b ±0.10	1.60 ^b ±0.09	2.33 ^a ±0.18

780 ¹⁾ Treatments: W, white button mushroom (*Agaricus bisporus*); K, king oyster mushroom (*Pleurotus eryngii*); S, shiitake mushroom (*Lentinula edodes*); O,
781 oyster mushroom (*Pleurotus ostreatus*).

782 ^{a-b} Means with different scripts in the same treatment are different ($p<0.05$).

783

784

Table 3. Results of DPPH radical scavenging activity (%), iron chelating ability (%), and reducing power (O.D.) of mushroom powder

Parameters	Treatments ¹⁾	Concentration (%)					
		0	0.05	0.1	0.25	0.5	1
DPPH radical scavenging activity (%)	AA	0.00 ^b ±0.01	93.9 ^{aA} ±1.07	93.4 ^{aA} ±0.23	93.4 ^{aA} ±0.39	93.7 ^{aA} ±0.39	93.5 ^{aA} ±1.20
	W	0.00 ^d ±0.01	35.8 ^{cC} ±1.67	45.9 ^{aB} ±0.82	42.4 ^{bE} ±0.79	37.9 ^{cD} ±0.96	40.8 ^{bC} ±1.05
	K	0.00 ^d ±0.01	23.4 ^{cD} ±1.27	35.6 ^{bC} ±1.84	49.1 ^{aC} ±1.72	47.3 ^{aC} ±1.90	49.9 ^{aB} ±0.59
	S	0.00 ^d ±0.01	40.9 ^{cB} ±0.32	44.5 ^{abB} ±1.41	45.9 ^{aD} ±1.60	46.8 ^{aC} ±1.80	41.7 ^{bcC} ±2.11
	O	0.00 ^d ±0.01	25.9 ^{cD} ±2.27	43.3 ^{bB} ±1.42	53.6 ^{aB} ±1.55	53.0 ^{aB} ±2.33	52.5 ^{aB} ±2.35
Iron chelating ability (%)	EDTA	0.00 ^b ±0.01	99.6 ^{bA} ±0.54	98.0 ^{aA} ±2.04	99.2 ^{aA} ±0.55	98.6 ^{aA} ±1.25	97.6 ^{aA} ±2.33
	W	0.00 ^d ±0.01	85.4 ^{aB} ±1.59	87.6 ^{aB} ±1.09	78.3 ^{bD} ±1.86	74.1 ^{cD} ±0.27	79.8 ^{bC} ±1.91
	K	0.00 ^c ±0.01	87.3 ^{bB} ±1.45	90.1 ^{aB} ±1.17	91.2 ^{aB} ±1.37	91.5 ^{aB} ±0.74	90.5 ^{aB} ±2.03
	S	0.00 ^c ±0.01	85.8 ^{abB} ±1.58	89.1 ^{ab} ±2.03	84.6 ^{bC} ±1.90	84.8 ^{bC} ±1.76	82.0 ^{bC} ±1.93
	O	0.00 ^d ±0.01	86.3 ^{cB} ±1.33	87.4 ^{bcB} ±1.55	88.6 ^{bcB} ±0.80	89.5 ^{bB} ±1.39	95.9 ^{aA} ±1.47
Reducing power (O.D.)	AA	0.00 ^e ±0.01	1.76 ^{cA} ±0.01	1.76 ^{aA} ±0.01	1.64 ^{bA} ±0.01	1.56 ^{cA} ±0.01	1.48 ^{dA} ±0.01
	W	0.00 ^e ±0.01	0.05 ^{dB} ±0.01	0.07 ^{dc} ±0.01	0.14 ^{cC} ±0.01	0.27 ^{bBC} ±0.01	0.53 ^{aB} ±0.03
	K	0.00 ^f ±0.01	0.03 ^{eC} ±0.01	0.04 ^{dc} ±0.01	0.08 ^{cD} ±0.01	0.12 ^{bD} ±0.01	0.19 ^{aD} ±0.01
	S	0.00 ^e ±0.01	0.05 ^{dB} ±0.01	0.07 ^{dc} ±0.01	0.16 ^{cC} ±0.01	0.31 ^{bB} ±0.02	0.61 ^{aB} ±0.06
	O	0.00 ^d ±0.01	0.04 ^{dB} ±0.01	0.13 ^{cB} ±0.03	0.21 ^{bB} ±0.04	0.25 ^{bC} ±0.04	0.40 ^{aC} ±0.05

785 ¹⁾Treatments: AA, ascorbic acid; EDTA, ethylene diamine tetraacetic acid; W, white button mushroom (*Agaricus bisporus*); K, king oyster mushroom (*Pleurotus eryngii*); S, shiitake mushroom (*Lentinula edodes*); O, oyster mushroom (*Pleurotus ostreatus*).

786 ^{a-f} Means with different superscripts within the same row are different ($p<0.05$).

787 ^{A-M} Means with different superscripts within the same column are different ($p<0.05$).

789
790**Table 4. Proximate composition (%) of pork ham with oyster mushroom powder**

Parameters (%)	Treatments ¹⁾			
	CTL	M1	M2	M3
Moisture	51.9 ^A ±0.71	52.1 ^A ±0.44	52.4 ^A ±0.56	49.8 ^B ±0.98
Fat	14.0 ^B ±0.73	13.1 ^B ±0.87	15.0 ^{AB} ±0.46	16.7 ^A ±1.18
Ash	2.49 ^B ±0.07	2.81 ^A ±0.02	2.78 ^A ±0.07	2.89 ^A ±0.10
Protein	31.5 ^A ±0.27	31.6 ^A ±0.87	29.8 ^B ±0.25	30.7 ^{AB} ±0.82

791 ¹⁾Treatment: CTL, oyster mushroom 0%; M1, oyster mushroom 0.5%; M2, oyster mushroom 1%; M3, oyster mushroom 3%.792 ^{A-B} Means with different scripts in the same treatment are different ($p<0.05$).

793

794

795
796**Table 5. Effect of treatments and storage days on pH, color, WHC, TBARS, POV, VRB, and TPC of pork ham with oyster mushroom powder during refrigerated storage at 4°C**

	Parameters ¹⁾						
	pH	L*	a*	b*	WHD	TBARS	POV
Storage days*	**	**	**	*	NS	**	**
Treatments							
Storage days	**	**	**	**	*	**	**
Treatments ²⁾	**	**	**	**	**	**	**
Storage days							
0	6.24 ^g ±0.02	63.4 ^f ±4.23	8.75 ^f ±0.48	10.5 ^f ±1.42	89.8 ^d ±0.62	0.04 ^h ±0.03	21.7 ^f ±1.40
7	6.36 ^f ±0.03	63.9 ^d ±4.15	8.84 ^e ±0.40	10.7 ^e ±1.29	90.5 ^{ab} ±0.67	0.06 ^g ±0.03	25.2 ^e ±0.99
14	6.38 ^d ±0.04	64.3 ^{de} ±4.44	8.88 ^e ±0.41	10.9 ^e ±1.47	90.8 ^a ±1.06	0.09 ^f ±0.04	27.4 ^d ±2.21
21	6.40 ^a ±0.02	64.5 ^{cd} ±4.21	8.95 ^d ±0.40	11.1 ^d ±1.50	90.0 ^{cd} ±0.90	0.09 ^e ±0.03	28.5 ^c ±1.97
28	6.39 ^c ±0.02	64.8 ^{bc} ±4.28	9.10 ^c ±0.36	11.2 ^{cd} ±1.43	90.0 ^{cd} ±0.85	0.10 ^d ±0.03	29.9 ^b ±1.15
35	6.37 ^c ±0.02	65.0 ^{bc} ±4.21	9.16 ^b ±0.35	11.2 ^{bc} ±1.41	90.2 ^{abc} ±0.72	0.10 ^c ±0.03	30.2 ^b ±1.35
42	6.39 ^b ±0.03	65.5 ^a ±4.35	9.19 ^b ±0.34	11.3 ^{ab} ±1.30	90.3 ^{abc} ±0.62	0.11 ^b ±0.03	30.1 ^b ±1.45
49	6.40 ^b ±0.02	64.7 ^{bc} ±4.22	9.50 ^a ±0.28	11.4 ^a ±1.32	89.8 ^d ±0.43	0.11 ^a ±0.03	31.1 ^a ±1.29
Treatments							
CTL	6.38 ^B ±0.05	69.8 ^A ±0.56	8.46 ^D ±0.33	8.98 ^D ±0.37	90.8 ^A ±0.68	0.06 ^D ±0.02	29.8 ^A ±3.13
M1	6.39 ^A ±0.05	66.2 ^B ±1.10	9.11 ^C ±0.36	10.7 ^C ±0.36	90.2 ^B ±0.67	0.07 ^C ±0.02	28.6 ^B ±2.95
M2	6.36 ^C ±0.05	63.9 ^C ±0.76	9.21 ^B ±0.16	11.8 ^B ±0.27	90.0 ^{BC} ±0.84	0.08 ^B ±0.02	27.5 ^C ±2.86
M3	6.33 ^D ±0.05	58.2 ^D ±0.74	89.41 ^A ±0.10	12.7 ^A ±0.33	89.8 ^C ±0.61	0.14 ^A ±0.03	26.1 ^D ±3.22

797 ¹⁾Parameter: L*, lightness; a*, redness; b*, yellowness; WHC, water-holding capacity; TBARS, thiobarbituric acid reactive substances; POV, peroxide value.798 ²⁾Treatment: CTL, oyster mushroom 0%; M1, oyster mushroom 0.5%; M2, oyster mushroom 1%; M3, oyster mushroom 3%.799 ^{a-h} Means with different letters within different storage days are different (p<0.05).800 ^{A-D} Means with different letters within different treatments are different (p<0.05).

801

Table 6. pH, color, water-holding capacity, TBARS, and POV of pork ham with oyster mushroom powder

Parameters ¹⁾	TRT ²⁾	Storage days							
		0	7	14	21	28	35	42	49
pH	CTL	6.25 ^{gB} ±0.01	6.37 ^{eB} ±0.01	6.42 ^{aA} ±0.01	6.42 ^{aA} ±0.01	6.41 ^{bA} ±0.01	6.37 ^{fB} ±0.01	6.39 ^{dB} ±0.01	6.39 ^{cB} ±0.01
	M1	6.27 ^{eA} ±0.01	6.39 ^{dA} ±0.01	6.42 ^{bA} ±0.01	6.42 ^{bA} ±0.01	6.40 ^{cB} ±0.01	6.40 ^{cdA} ±0.01	6.42 ^{bA} ±0.01	6.43 ^{aA} ±0.01
	M2	6.24 ^{dC} ±0.01	6.35 ^{cC} ±0.01	6.36 ^{cB} ±0.01	6.41 ^{aB} ±0.01	6.40 ^{abC} ±0.01	6.36 ^{cC} ±0.01	6.41 ^{aA} ±0.01	6.39 ^{bB} ±0.01
	M3	6.21 ^{gD} ±0.01	6.32 ^{fD} ±0.01	6.33 ^{eC} ±0.01	6.37 ^{bC} ±0.01	6.35 ^{dD} ±0.01	6.35 ^{cD} ±0.01	6.36 ^{eC} ±0.01	6.37 ^{aC} ±0.01
L*	CTL	68.9 ^{cA} ±0.32	69.0 ^{cA} ±0.21	70.0 ^{abA} ±0.08	70.1 ^{abA} ±0.29	70.1 ^{abA} ±0.10	70.1 ^{abA} ±0.05	70.4 ^{aA} ±0.33	69.9 ^{bA} ±0.20
	M1	64.6 ^{dB} ±0.22	65.5 ^{cB} ±0.25	65.6 ^{cB} ±0.19	65.8 ^{cB} ±0.57	66.9 ^{bB} ±0.53	67.0 ^{bB} ±0.31	68.0 ^{aB} ±0.37	65.8 ^{cB} ±0.16
	M2	62.8 ^{dC} ±0.22	63.6 ^{cdC} ±0.15	63.7 ^{bcC} ±0.49	63.8 ^{bcC} ±0.20	63.8 ^{bcC} ±0.10	63.9 ^{bcC} ±0.68	64.5 ^{abC} ±0.38	65.1 ^{aB} ±0.58
	M3	57.1 ^{cD} ±0.22	57.6 ^{bcD} ±0.40	57.7 ^{bcD} ±0.24	58.4 ^{abD} ±0.43	58.5 ^{abD} ±0.20	58.9 ^{aD} ±1.04	58.9 ^{aD} ±0.10	58.2 ^{abcC} ±0.13
a*	CTL	8.00 ^{eD} ±0.08	8.22 ^{dD} ±0.01	8.26 ^{dD} ±0.02	8.32 ^{dD} ±0.03	8.51 ^{cD} ±0.04	8.59 ^{bcD} ±0.06	8.63 ^{bcC} ±0.02	9.15 ^{aD} ±0.05
	M1	8.74 ^{dC} ±0.02	8.81 ^{cdC} ±0.07	8.84 ^{cdC} ±0.15	8.91 ^{cC} ±0.03	9.18 ^{bC} ±0.01	9.23 ^{bC} ±0.01	9.27 ^{bB} ±0.08	9.89 ^{aA} ±0.04
	M2	9.00 ^{cB} ±0.06	9.01 ^{cB} ±0.01	9.08 ^{cB} ±0.07	9.21 ^{bB} ±0.02	9.28 ^{abB} ±0.01	9.36 ^{ab} ±0.04	9.37 ^{aA} ±0.04	9.39 ^{aC} ±0.09
	M3	9.27 ^{fA} ±0.09	9.31 ^{efA} ±0.01	9.34 ^{deA} ±0.02	9.36 ^{dA} ±0.02	9.44 ^{cA} ±0.03	9.48 ^{bcA} ±0.02	9.50 ^{ba} ±0.01	9.59 ^{aB} ±0.03
b*	CTL	8.48 ^{eD} ±0.09	8.86 ^{dD} ±0.05	8.57 ^{eD} ±0.01	8.83 ^{dD} ±0.05	9.02 ^{cD} ±0.12	9.10 ^{cD} ±0.01	9.44 ^{bD} ±0.07	9.58 ^{aD} ±0.02
	M1	10.0 ^{bC} ±0.15	10.4 ^{bC} ±0.16	10.8 ^{aC} ±0.02	10.8 ^{aC} ±0.46	10.8 ^{aC} ±0.02	10.9 ^{aC} ±0.05	10.9 ^{aC} ±0.02	10.9 ^{aC} ±0.06
	M2	11.4 ^{dB} ±0.09	11.5 ^{dB} ±0.09	11.6 ^{cdB} ±0.15	11.8 ^{bcB} ±0.09	11.9 ^{abB} ±0.05	12.0 ^{ab} ±0.02	12.1 ^{aB} ±0.08	12.1 ^{aB} ±0.12
	M3	12.2 ^{dA} ±0.15	12.3 ^{cdA} ±0.08	12.5 ^{cA} ±0.09	12.8 ^{bA} ±0.26	12.9 ^{abA} ±0.05	12.9 ^{abA} ±0.04	12.9 ^{abA} ±0.04	13.1 ^{aA} ±0.14
WHC	CTL	89.8 ^{dA} ±0.35	91.0 ^{abA} ±0.73	91.8 ^{aA} ±0.16	90.7 ^{bcA} ±0.15	91.0 ^{abA} ±0.37	91.0 ^{abA} ±0.39	91.0 ^{abA} ±0.16	90.1 ^{cdA} ±0.36
	M1	90.5 ^{aA} ±0.50	90.8 ^{aAB} ±0.55	90.8 ^{aA} ±0.61	89.8 ^{aA} ±0.68	90.0 ^{aAB} ±0.51	90.1 ^{aAB} ±0.48	90.2 ^{aB} ±0.36	89.8 ^{aA} ±0.64
	M2	89.8 ^{aA} ±0.65	89.8 ^{ab} ±0.13	90.0 ^{aA} ±1.54	90.0 ^{aA} ±1.17	89.5 ^{aB} ±0.73	90.3 ^{aAB} ±0.47	90.4 ^{aAB} ±0.13	89.7 ^{aA} ±0.06
	M3	90.0 ^{abA} ±0.63	90.3 ^{abAB} ±0.20	90.4 ^{aA} ±0.23	89.5 ^{abA} ±0.73	89.2 ^{bb} ±0.41	89.4 ^{abB} ±0.30	89.7 ^{abB} ±0.61	89.6 ^{abA} ±0.22
TBARS	CTL	0.02 ^{fC} ±0.01	0.03 ^{fD} ±0.01	0.06 ^{eD} ±0.01	0.07 ^{dC} ±0.01	0.08 ^{cC} ±0.01	0.08 ^{bC} ±0.01	0.09 ^{aD} ±0.01	0.09 ^{aC} ±0.01
	M1	0.02 ^{gC} ±0.01	0.05 ^{fC} ±0.01	0.06 ^{eC} ±0.01	0.07 ^{dC} ±0.01	0.08 ^{cC} ±0.01	0.09 ^{bB} ±0.01	0.09 ^{abC} ±0.01	0.10 ^{aB} ±0.01
	M2	0.03 ^{gB} ±0.01	0.05 ^{fB} ±0.01	0.08 ^{eB} ±0.01	0.09 ^{cB} ±0.01	0.08 ^{dB} ±0.01	0.09 ^{bB} ±0.01	0.10 ^{aB} ±0.01	0.10 ^{aB} ±0.01
	M3	0.09 ^{fA} ±0.01	0.10 ^{eA} ±0.01	0.15 ^{dA} ±0.01	0.15 ^{dA} ±0.01	0.15 ^{cA} ±0.01	0.15 ^{cA} ±0.01	0.16 ^{bA} ±0.01	0.17 ^{aA} ±0.01
POV	CTL	23.2 ^{cA} ±0.09	26.3 ^{dA} ±0.24	30.7 ^{cA} ±0.21	30.9 ^{cA} ±0.72	31.0 ^{cA} ±0.16	31.5 ^{bcA} ±0.67	32.1 ^{bA} ±0.28	33.0 ^{aA} ±0.26
	M1	22.6 ^{eA} ±0.06	25.7 ^{dAB} ±0.29	27.4 ^{cB} ±0.68	29.7 ^{bA} ±0.15	30.8 ^{aA} ±0.45	31.0 ^{aAB} ±0.24	30.5 ^{aB} ±0.45	31.3 ^{aB} ±0.32
	M2	21.4 ^{dB} ±0.23	25.0 ^{cB} ±0.25	26.9 ^{bb} ±0.57	27.6 ^{bb} ±0.58	29.5 ^{aB} ±0.39	29.9 ^{aB} ±0.83	29.5 ^{aBC} ±0.07	30.2 ^{aC} ±0.09
	M3	19.6 ^{eC} ±0.58	23.8 ^{dC} ±0.46	24.7 ^{cdC} ±0.44	25.9 ^{cC} ±0.52	28.4 ^{bb} ±0.72	28.3 ^{bc} ±0.40	28.4 ^{bc} ±0.91	30.0 ^{aC} ±0.76

803 ¹⁾Parameter: L*, lightness; a*, redness; b*, yellowness; WHC, water-holding capacity; TBARS, thiobarbituric acid reactive substances; POV, peroxide value.

804 ²⁾Treatment: CTL, oyster mushroom 0%; M1, oyster mushroom 0.5%; M2, oyster mushroom 1%; M3, oyster mushroom 3%.

805 ^{a-g} Means within the same row with different letters are different ($p<0.05$).

806 ^{A-D} Means within the same column with different letters are different ($p<0.05$).

807

Table 7. Effect of treatments and storage days texture profile analysis (TPA) of pork ham with oyster mushroom powder during refrigerated storage at 4°C

	Hardness	Deformation	Adhesiveness	Resilience	Parameters			
					Cohesiveness	Springiness	Gumminess	Chewiness
Storage days*	**	NS	NS	**	**	**	**	**
Treatments								
Storage days	**	**	**	**	**	*	**	**
Treatments ¹⁾	**	**	**	**	**	**	**	**
Storage days								
0	2905.1 ^h ±92.6	4.98 ^c ±0.01	0.24 ^a ±0.02	0.27 ^g ±0.02	0.54 ^g ±0.02	4.05 ^h ±0.03	1544.6 ^h ±24.8	61.7 ^h ±1.99
7	3048.1 ^g ±34.7	4.98 ^c ±0.01	0.22 ^b ±0.02	0.27 ^f ±0.01	0.55 ^f ±0.01	4.09 ^g ±0.02	1598.1 ^g ±36.9	62.7 ^g ±2.35
14	3064.5 ^f ±28.5	4.98 ^b ±0.01	0.21 ^b ±0.02	0.28 ^e ±0.01	0.56 ^e ±0.02	4.11 ^f ±0.03	1646.2 ^e ±58.2	64.1 ^f ±3.03
21	3072.2 ^e ±44.6	4.98 ^{ab} ±0.01	0.19 ^c ±0.02	0.29 ^d ±0.01	0.57 ^d ±0.02	4.13 ^e ±0.03	1640.9 ^f ±33.9	66.1 ^e ±2.80
28	3084.5 ^d ±44.0	4.98 ^{ab} ±0.01	0.18 ^{cd} ±0.02	0.30 ^c ±0.01	0.57 ^c ±0.02	4.15 ^d ±0.02	1684.9 ^d ±42.2	66.9 ^d ±2.86
35	6148.1 ^c ±41.2	4.98 ^a ±0.01	0.17 ^{de} ±0.02	0.30 ^{bc} ±0.01	0.58 ^c ±0.02	4.16 ^c ±0.03	1702.6 ^c ±50.1	68.5 ^c ±3.64
42	3164.0 ^b ±30.4	4.98 ^b ±0.01	0.16 ^e ±0.02	0.30 ^b ±0.01	0.58 ^b ±0.02	4.18 ^b ±0.03	1761.8 ^b ±73.5	70.7 ^b ±4.42
49	3209.6 ^a ±32.7	4.98 ^{ab} ±0.01	0.16 ^e ±0.02	0.31 ^a ±0.01	0.59 ^a ±0.01	4.20 ^a ±0.02	1790.0 ^a ±65.8	72.0 ^a ±2.98
Treatments								
CTL	3024.4 ^D ±113.4	4.98 ^C ±0.01	0.17 ^C ±0.03	0.30 ^A ±0.01	0.59 ^A ±0.02	4.16 ^A ±0.05	1709.2 ^A ±93.4	68.9 ^A ±4.34
M1	3078.1 ^C ±89.1	4.98 ^B ±0.01	0.19 ^B ±0.04	0.30 ^B ±0.01	0.58 ^B ±0.02	4.15 ^B ±0.05	1695.5 ^B ±81.9	68.4 ^B ±4.72
M2	3103.7 ^B ±75.9	4.98 ^{AB} ±0.01	0.19 ^B ±0.03	0.29 ^C ±0.01	0.57 ^C ±0.01	4.13 ^C ±0.05	1688.4 ^C ±81.1	67.5 ^C ±2.98
M3	3141.9 ^A ±72.5	4.98 ^A ±0.01	0.21 ^A ±0.03	0.27 ^D ±0.01	0.54 ^D ±0.02	4.10 ^D ±0.04	1591.7 ^D ±53.1	61.5 ^D ±3.78

809 ¹⁾Treatment: CTL, oyster mushroom 0%; M1, oyster mushroom 0.5%; M2, oyster mushroom 1%; M3, oyster mushroom 3%.810 ^{a-h} Means with different letters within different storage days are different (p<0.05).811 ^{A-D} Means with different letters within different treatments are different (p<0.05).

812

Table 8. Texture profile analysis (TPA) of pork ham with oyster mushroom powder

Parameters	TRT ¹⁾	Storage days							
		0	7	14	21	28	35	42	49
Hardness (g)	CTL	2768.3 ^D ±2.05	2996.4 ^{gD} ±4.33	3028.4 ^{dC} ±3.50	2999.0 ^{fD} ±1.65	3016.0 ^{eD} ±4.08	3090.8 ^{cD} ±5.28	3130.1 ^{bD} ±4.51	3166.0 ^{aD} ±5.30
	M1	2881.2 ^{gC} ±2.11	3038.4 ^{fC} ±2.51	3059.4 ^{eB} ±6.76	3078.4 ^{eC} ±2.86	3083.7 ^{dC} ±3.14	3137.6 ^{cC} ±2.28	3147.8 ^{bC} ±1.57	3198.0 ^{aC} ±4.22
	M2	2953.2 ^{eB} ±1.26	3071.0 ^{dB} ±5.19	3062.9 ^{dB} ±5.03	3094.6 ^{cB} ±5.32	3102.2 ^{cB} ±4.49	3159.2 ^{bB} ±4.79	3167.0 ^{bB} ±0.72	3219.2 ^{aB} ±1.54
	M3	3017.8 ^{gA} ±5.94	3086.4 ^{fA} ±3.71	3107.0 ^{eA} ±4.81	3117.0 ^{dA} ±1.63	3136.0 ^{cA} ±4.75	3204.8 ^{bA} ±1.66	3211.1 ^{bA} ±5.05	3255.2 ^{aA} ±4.32
Adhesive-ness (mJ)	CTL	0.21 ^{aB} ±0.02	0.20 ^{aB} ±0.01	0.16 ^{abC} ±0.02	0.17 ^{bcB} ±0.01	0.16 ^{cDB} ±0.02	0.14 ^{cdB} ±0.02	0.13 ^{dB} ±0.01	0.13 ^{dB} ±0.01
	M1	0.24 ^{aAB} ±0.02	0.23 ^{abAB} ±0.03	0.22 ^{abAB} ±0.02	0.20 ^{bcAB} ±0.03	0.18 ^{cdaB} ±0.02	0.17 ^{cdAB} ±0.01	0.16 ^{dAB} ±0.02	0.16 ^{dAB} ±0.02
	M2	0.24 ^{aAB} ±0.02	0.21 ^{bAB} ±0.02	0.20 ^{bcBC} ±0.01	0.19 ^{cdAB} ±0.02	0.18 ^{cdeAB} ±0.02	0.17 ^{deAB} ±0.01	0.17 ^{deA} ±0.01	0.16 ^{eAB} ±0.02
	M3	0.26 ^{aA} ±0.02	0.24 ^{aA} ±0.02	0.23 ^{abA} ±0.01	0.21 ^{bcA} ±0.02	0.20 ^{cda} ±0.01	0.19 ^{cdA} ±0.02	0.18 ^{dA} ±0.02	0.18 ^{dA} ±0.01
Resilience	CTL	0.28 ^{eA} ±0.01	0.29 ^{dA} ±0.01	0.29 ^{cA} ±0.01	0.31 ^{bA} ±0.01	0.31 ^{abA} ±0.01	0.31 ^{abA} ±0.01	0.31 ^{aA} ±0.01	0.32 ^{aA} ±0.01
	M1	0.27 ^{fB} ±0.01	0.28 ^{eAB} ±0.01	0.29 ^{dA} ±0.01	0.30 ^{cB} ±0.01	0.31 ^{bB} ±0.01	0.31 ^{bAB} ±0.01	0.31 ^{bB} ±0.01	0.31 ^{aA} ±0.01
	M2	0.27 ^{eB} ±0.01	0.28 ^{dB} ±0.01	0.28 ^{cB} ±0.01	0.29 ^{bC} ±0.01	0.30 ^{bC} ±0.01	0.30 ^{aB} ±0.01	0.30 ^{aC} ±0.01	0.30 ^{aB} ±0.01
	M3	0.24 ^{fC} ±0.01	0.25 ^{eC} ±0.01	0.26 ^{dC} ±0.01	0.27 ^{cD} ±0.01	0.28 ^{bCD} ±0.01	0.28 ^{bC} ±0.01	0.28 ^{bD} ±0.01	0.29 ^{aC} ±0.01
Cohesive-ness	CTL	0.56 ^{dA} ±0.01	0.56 ^{dA} ±0.01	0.59 ^{cA} ±0.01	0.59 ^{cA} ±0.01	0.59 ^{bca} ±0.01	0.60 ^{abA} ±0.01	0.60 ^{aA} ±0.01	0.60 ^{aA} ±0.01
	M1	0.56 ^{eA} ±0.01	0.56 ^{deA} ±0.01	0.56 ^{dB} ±0.01	0.58 ^{cB} ±0.01	0.58 ^{bcAB} ±0.01	0.59 ^{bB} ±0.01	0.60 ^{aA} ±0.01	0.60 ^{aB} ±0.01
	M2	0.55 ^{eA} ±0.01	0.56 ^{deA} ±0.01	0.56 ^{dB} ±0.01	0.57 ^{cC} ±0.01	0.58 ^{bB} ±0.01	0.58 ^{bB} ±0.01	0.58 ^{bB} ±0.01	0.59 ^{aC} ±0.01
	M3	0.51 ^{eB} ±0.01	0.53 ^{dB} ±0.01	0.53 ^{dC} ±0.01	0.54 ^{cD} ±0.01	0.54 ^{bC} ±0.01	0.55 ^{bC} ±0.01	0.55 ^{bC} ±0.01	0.56 ^{aD} ±0.01
Springi-ness (mm)	CTL	4.09 ^{fA} ±0.01	4.11 ^{eA} ±0.01	4.14 ^{dA} ±0.01	4.15 ^{cA} ±0.01	4.16 ^{cA} ±0.02	4.19 ^{bA} ±0.01	4.22 ^{aA} ±0.01	4.23 ^{aA} ±0.01
	M1	4.06 ^{gB} ±0.01	4.10 ^{fA} ±0.01	4.13 ^{eAB} ±0.02	4.15 ^{dA} ±0.01	4.16 ^{cda} ±0.01	4.18 ^{bcA} ±0.01	4.19 ^{bB} ±0.01	4.21 ^{aB} ±0.01
	M2	4.04 ^{fBC} ±0.01	4.08 ^{eB} ±0.01	4.11 ^{dB} ±0.01	4.14 ^{cA} ±0.01	4.15 ^{cA} ±0.01	4.17 ^{bA} ±0.01	4.18 ^{abC} ±0.01	4.20 ^{aC} ±0.01
	M3	4.02 ^{fC} ±0.01	4.06 ^{eB} ±0.01	4.07 ^{eC} ±0.01	4.09 ^{dB} ±0.02	4.11 ^{cB} ±0.01	4.12 ^{cB} ±0.01	4.14 ^{bD} ±0.01	4.17 ^{aD} ±0.01
Gummi-ness (g)	CTL	1573.4 ^{hA} ±1.97	1612.4 ^{gB} ±0.68	1709.2 ^{cA} ±3.03	1635.2 ^{fC} ±1.77	1721.9 ^{dA} ±3.22	1737.2 ^{cA} ±2.73	1832.6 ^{bA} ±5.45	1851.9 ^{aA} ±3.14
	M1	1559.7 ^{hB} ±3.81	1607.6 ^{gB} ±0.63	1670.3 ^{fB} ±4.90	1675.8 ^{eA} ±0.31	1705.0 ^{dB} ±1.66	1729.2 ^{cB} ±3.40	1796.4 ^{bB} ±3.87	1817.9 ^{aB} ±2.22
	M2	1536.8 ^{hC} ±4.53	1635.4 ^{gA} ±3.82	1653.2 ^{fC} ±4.17	1664.4 ^{eB} ±4.12	1699.4 ^{dC} ±2.22	1727.9 ^{cB} ±2.88	1779.1 ^{bC} ±2.20	1810.7 ^{aB} ±4.38
	M3	1508.4 ^{gD} ±0.96	1537.0 ^{fC} ±1.78	1552.0 ^{eD} ±0.27	1588.3 ^{dD} ±4.32	1613.3 ^{cD} ±0.47	1616.1 ^{cC} ±0.87	1639.2 ^{bD} ±0.83	1679.4 ^{aC} ±4.49
Chewi-ness (mJ)	CTL	62.5 ^{fB} ±0.14	63.9 ^{eAB} ±0.05	66.1 ^{dA} ±0.22	68.7 ^{cA} ±0.27	69.1 ^{cA} ±0.33	71.7 ^{bA} ±0.31	474.6 ^{aA} ±0.31	74.8 ^{aA} ±0.14
	M1	62.8 ^{gAB} ±0.41	63.4 ^{fB} ±0.19	66.0 ^{eA} ±0.49	67.7 ^{dB} ±0.57	68.5 ^{cAB} ±0.32	71.2 ^{bA} ±0.07	73.6 ^{aB} ±0.23	73.7 ^{aB} ±0.23
	M2	63.1 ^{gA} ±0.11	64.6 ^{fA} ±0.24	65.5 ^{eA} ±0.27	66.6 ^{dC} ±0.05	68.0 ^{cB} ±0.21	68.4 ^{cB} ±0.38	71.4 ^{bC} ±0.26	72.4 ^{aC} ±0.29
	M3	58.3 ^{eC} ±0.17	58.7 ^{eC} ±0.64	59.0 ^{bB} ±0.60	61.5 ^{dD} ±0.46	62.0 ^{cDC} ±0.47	62.5 ^{bcC} ±0.17	63.3 ^{bD} ±0.14	67.1 ^{aD} ±0.44

814 ¹⁾Treatment: CTL, oyster mushroom 0%; M1, oyster mushroom 0.5%; M2, oyster mushroom 1%; M3, oyster mushroom 3%.

815 ^{a-g} Means within the same row with different letters are different ($p<0.05$).

816 ^{A-D} Means within the same column with different letters are different ($p<0.05$).

ACCEPTED

ACCEPTED