

1
2
3
4

TITLE PAGE
- Food and Life-
Upload this completed form to website with submission

ARTICLE INFORMATION		Fill in information in each box below
Article Type	Article, Short Communication, Review or Survey.	
Article Title (English)	Enrichment of meat products with oyster mushroom: A review	
Article Title (Korean) English papers can be omitted		
Running Title (English, within 10 words)	Pleurotus ostreatus, meat enrichment, functional foods, bioactive compounds, sensory evaluation	
Author (English)	Gantumur Zuljargal ¹ , Min Ji Koh ¹ , Hyeong Sang Kim ^{1,2}	
Affiliation (English)	1 School of Animal Life Convergence Science, Hankyong National University, Anseong 17579, Republic of Korea 2 Institute of Applied Humanimal Science, Hankyong National University, Anseong 17579, Republic of Korea	
Author (Korean) English papers can be omitted		
Affiliation (Korean) English papers can be omitted		
Special remarks – if authors have additional information to inform the editorial office		
ORCID and Position(All authors must have ORCID) (English) https://orcid.org	Gantumur Zuljargal (Graduate Student, https://orcid.org/0009-0000-6763-7370) Min Ji Koh (Graduate Student, https://orcid.org/0009-0009-1895-4420) Hyeong Sang Kim (Associate Professor, https://orcid.org/0000-0001-7054-2989)	
Conflicts of interest (English) List any present or potential conflicts of interest for all authors. (This field may be published.)	The authors declare no potential conflict of interest.	
Acknowledgements (English) State funding sources (grants, funding sources, equipment, and supplies). Include name and number of grant if available. (This field may be published.)		
Author contributions (This field may be published.)	Conceptualization: Kim HS. Data curation: Zuljargal G. Formal analysis: Zuljargal G. Methodology: Kim HS. Software: Zuljargal G. Validation: Kim HS. Investigation: Zuljargal G. Writing - original draft: Zuljargal G, Koh MJ, Kim HS. Writing - review & editing: Zuljargal G, Koh MJ, Kim HS. (This field must list all authors)	
Ethics approval (IRB/IACUC) (English) (This field may be published.)	This manuscript does not require IRB/IACUC approval because there are no human and animal participants.	

5
6

CORRESPONDING AUTHOR CONTACT INFORMATION

For the <u>corresponding</u> author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below
First name, middle initial, last name	Hyeong Sang Kim
Email address – this is where your proofs will be sent	dock-0307@hknu.ac.kr
Secondary Email address	
Postal address	17579
Cell phone number	+82-010-3930-2215
Office phone number	+82-031-670-5123
Fax number	+82-031-670-5090

7
8

ACCEPTED

9 **Enrichment of meat products with oyster mushroom: A Review**

10 **ABSTRACT**

11 This literature review examines the current state of research on enriching meat products with
12 oyster mushroom (*Pleurotus ostreatus*), covering nutritional benefits, technological considerations,
13 sensory characteristics, food safety aspects, and future perspectives. The growing demand for
14 functional foods led to increased interest in incorporating edible mushrooms into meat products.
15 Studies demonstrated that oyster mushrooms enhance the antioxidant capacity and sensory appeal
16 of meat products while simultaneously reducing fat content and preventing lipid oxidation. The
17 oyster mushroom enrichment up to 2% in sausage formulations, resulting in products with
18 significantly enhanced functional properties. The incorporation of oyster mushroom powder
19 represents a promising strategy for developing healthier, more sustainable meat products with
20 enhanced bioactive compounds and improved nutritional profiles while maintaining consumer
21 acceptability within optimal formulation ranges.

22 **Keywords:** *Pleurotus ostreatus*, meat enrichment, functional foods, bioactive compounds, sensory
23 evaluation

24

25 **1. Introduction**

26 The global food industry faces unprecedented challenges driven by increasing consumer health
27 consciousness, sustainability concerns, and growing demand for functional foods. Recent studies
28 demonstrate that while consumers increasingly seek healthier and more environmentally friendly
29 food alternatives, actual product selection and preferences continue to be primarily determined by
30 sensory attributes such as taste, aroma, and texture (Khezerlou et al., 2025). Traditional meat
31 products serve as excellent protein sources but are associated with various health concerns due to
32 their high saturated fat content, excessive sodium concentrations, and limited dietary fiber (Geiker
33 et al., 2021; Mishra et al., 2023). Against this backdrop, researchers are exploring innovative
34 approaches to enhance the nutritional and functional characteristics of meat products by
35 incorporating plant-derived ingredients (Mishra et al., 2023). Multiple studies demonstrate that
36 mushrooms possess a dual capacity as both waste converters and functional food resources, being
37 able to transform lignocellulosic waste into beneficial human food while generating various
38 bioactive compounds that promote health (Kumla et al., 2020; Fitsum et al., 2025). Among these,
39 edible mushrooms are gaining particular attention as promising alternative food ingredients due to
40 their unique nutritional composition and bioactive components. Das et al. (2021) reported that
41 mushrooms are rich sources of important nutrients and bioactive compounds, including proteins,
42 fibers, vitamins, minerals, and nutraceuticals, while being low in calories, sodium, fat, and
43 cholesterol. Integrating mushroom powder into meat products offers advantageous effects in three
44 aspects: nutritional enrichment, improvement of technological processing characteristics, and cost

45 reduction through partial meat replacement. Among them, oyster mushroom (*Pleurotus ostreatus*)
46 has received considerable attention in recent decades due to its outstanding nutritional properties
47 and ease of cultivation (Philippoussis et al., 2001; Torres-Martínez et al., 2022). Studies have
48 shown that meat products incorporating oyster mushrooms provide practical possibilities to
49 develop health-oriented products with enhanced functionality, while maintaining consumer
50 acceptability.

51

52 **2. Role of edible mushrooms as functional food ingredients**

53 **2.1 Nutritional composition of edible mushrooms**

54 According to researchers, *Pleurotus ostreatus* could be an important protein source for meat
55 products, with protein content ranging from 7.3% to 53.3% (Table 1). Compared to alternative
56 food resources, oyster mushroom provides a complete protein structure containing all nine
57 essential amino acids, making them evaluated as a suitable ingredient alternative to animal protein
58 (Torres-Martínez et al., 2022). These excellent nutritional values originate from the unique
59 composition of the oyster mushroom, which includes high-quality protein rich in essential amino
60 acids, dietary fiber, vitamins, and minerals. These components can supplement or enhance the
61 nutritional characteristics of traditional meat products. When oyster mushroom powder is applied
62 in meat processing, it improves physical characteristics such as moisture content, water holding
63 capacity, springiness, and color (Mazlan et al., 2020; Wan Rosli et al., 2011; Jung et al., 2022).
64 Oyster mushroom is effectively used as a meat replacer and extender due to their umami flavor,
65 meat-like texture, and inherent similarity to meat characteristics (Mazlan et al., 2020; Singh et al.,
66 2023). Particularly, amino acids such as aspartic acid and glutamic acid enhance the umami flavor
67 (Boro et al., 2025).

68 Oyster mushrooms are rich in minerals, including iron, zinc, calcium, and magnesium (Effiong et
69 al., 2024). Iron-fortified oyster mushrooms play a significant role in preventing iron deficiency,
70 with iron bioavailability (21.68%) comparable to that of meat sources (Pandey et al., 2020). Oyster
71 mushroom helps preserve the inherent iron content of meat while contributing to or preventing
72 iron deficiency (Pérez-Montes et al., 2021).

73

74 **2.2 Bioactive compounds and health-promoting effects**

75 Multiple studies have confirmed that oyster mushrooms contain various bioactive components,
76 including polysaccharides (α -glucan and β -glucan), functional proteins, enzymes and peptides,
77 phenolic acids, and flavonoids (Mishra et al., 2021; Lesa et al., 2022). These components provide
78 the basis for health-promoting effects related to oyster mushroom consumption, including
79 antioxidant, antimicrobial, and immunomodulatory activities. Oyster mushroom is an edible
80 mushroom with excellent antioxidant activity, with effects mainly attributable to polyphenolic

81 compounds and other bioactive components (Lebeque et al., 2018; Chilanti et al., 2021).
82 Tokarczyk et al. (2023) reported that polyphenol content significantly increased in burger products
83 supplemented with oyster mushrooms, thereby positively affecting antioxidant capacity in meat
84 products. The addition of oyster mushrooms rich in polyphenolic compounds to the burgers
85 enhanced the antioxidant properties of the products (Figure 1).

86 Additionally, oyster mushrooms exhibit antimicrobial and preservation properties. Studies have
87 shown that addition of oyster mushrooms to sausage products improved storage stability of the
88 products, through reduced lipid oxidation and enhanced antioxidant properties during refrigerated
89 storage (Cerón-Guevara et al., 2020a; Boylu et al., 2024). This suggests that oyster mushrooms
90 function as a natural preservative, providing possibilities to reduce the use of synthetic additives
91 in meat products.

92

93 **2.3 Global production trends and economic value**

94 According to research, mushroom cultivation is evaluated as an economical and sustainable
95 biotechnology that can convert various lignocellulosic wastes into high-value food ingredients
96 (Sánchez, 2010; Kumla et al., 2020). Oyster mushrooms have steadily risen in commercial value
97 worldwide due to their simple cultivation conditions, high nutritional value, and diverse
98 applicability. Mushroom cultivation represents an effective approach for transforming
99 environmental waste into alternative nutritious food sources, with oyster mushrooms
100 demonstrating a remarkable ability to break down lignocellulosic residues from agricultural fields
101 and forests (Philippoussis et al., 2001).

102 Various agricultural substrates have been evaluated for oyster mushroom cultivation. Studies have
103 shown that different substrates, including cotton waste, wheat straw, and sawdust, can be
104 successfully used for cultivation, with varying yields depending on substrate composition
105 (Philippoussis et al., 2001; Akcay et al., 2023). The fact that agricultural waste can be used as a
106 cultivation substrate is also an important advantage in terms of cost reduction when applying oyster
107 mushroom powder in the food industry. Aditya et al. (2024) reported that cultivating oyster
108 mushrooms presents an economically feasible and environmentally friendly method of
109 transforming waste materials into highly nutritious food. Oyster mushrooms show excellent
110 growth performance on perishable organic matter, with cultivation being largely determined by
111 the availability and utilization of cheap by-products and waste materials (Argaw et al., 2023). This
112 strengthens its potential as a raw material suitable for mass production and industrialization in the
113 meat processing industry.

114

115 **3. Nutritional characteristics of oyster mushroom and its application as a functional food 116 ingredient**

117 **3.1 Nutritional profile and bioactive functions**

118 Oyster mushroom (*Pleurotus ostreatus*) has very promising potential as a food ingredient for
119 improving the functionality of meat products. According to Rohmawati et al. (2019) oyster
120 mushroom-based analog sausage formulation experiment showed that a component composition
121 of 14% protein, 11.22% fat, 44.24% moisture, 6.02% crude fiber, 2.37% ash, and 27.29%
122 carbohydrate demonstrated its potential as a meat alternative or fortified meat product with a
123 balanced macronutrient ratio.

124 Meaningful nutritional improvements were also observed in research applying oyster mushrooms
125 to chicken patties. Wan Rosli et al. (2011) found that when 25% of chicken was replaced with
126 *Pleurotus sajor-caju*, the protein content of 17.46% was not statistically significant compared to
127 the control group (18.13%), but protein concentration significantly decreased with 50%
128 replacement. The increase in dietary fiber content was particularly notable. Products with 50%
129 minced oyster mushroom added to chicken patties had the highest total dietary fiber (TDF) content
130 at 4.90 g/100g, while the 25% addition group recorded 3.40 g/100g and the control group 1.90
131 g/100g. This demonstrates that oyster mushrooms can supply dietary fiber and are a suitable
132 material for developing functional meat products that meet daily intake recommendations (Wan
133 Rosli et al., 2011). It suggests that oyster mushroom application at appropriate addition levels can
134 maintain product quality while improving nutrition.

135 The bioactive functions of oyster mushrooms extend beyond simple nutritional supply.
136 Antioxidant capacity is particularly noteworthy, with Tokarczyk et al. (2023) reporting that burger
137 products supplemented with oyster mushrooms showed improved antioxidant capacity and
138 increased sensory appeal. Additionally, along with a reduction in product fat content, lipid
139 oxidation inhibition effects were observed, providing advantages for manufacturing healthier meat
140 products.

141

142 **3.2 Cultivation characteristics, accessibility, and sustainability**

143 Oyster mushroom cultivation is considered an agricultural system that simultaneously satisfies
144 economic efficiency and sustainability (Amarasinghe et al., 2025). This mushroom has an
145 excellent ability to convert agricultural and industrial by-products (sawdust, rice straw, corn husks,
146 etc.) into nutritious food, contributing to resource circulation and environmental conservation
147 (Girmay et al., 2016). Research results showed possibilities for oyster mushroom cultivation using
148 various waste substrates. For example, various substrates such as cottonseed, paper waste, sawdust,
149 and straw can be used for cultivation, and among them, cottonseed and wastepaper substrates
150 recorded the highest biological efficiency and yield (Girmay et al., 2016). Oyster mushroom
151 cultivation is possible indoors year-round, and home cultivation is easy, providing opportunities
152 for farm income generation (Barh et al., 2019). Particularly, the low production cost and scalable
153 cultivation potential of *Pleurotus ostreatus* have been identified as key drivers for its industrial
154 applicability in food systems (Ayuso et al., 2025).

155

156 **4. Application cases of oyster mushroom in meat products and technical considerations**

157 **4.1 Technical characteristics and formulation design considerations**

158 According to experiments, meat products containing 2% oyster mushroom powder showed higher
159 complex viscosity and emulsion stability compared to other samples (Jung et al., 2022). These
160 results indicated that oyster mushroom powder plays an important technical role in designing
161 optimal integration levels and processing parameters within meat products. Oyster mushrooms are
162 receiving attention as a health-oriented food material that is rich in highly biologically valuable
163 protein, dietary fiber, and bioactive compounds (Jung et al., 2022). Jung et al. (2022) evaluated
164 the effects of oyster mushroom powder supplementation at levels of 0%, 1%, and 2% on the
165 emulsion stability of meat products using dynamic rheological measurements and recovery test.
166 According to these results, oyster mushroom powder decreased various technical characteristics
167 of meat products, such as protein, fat, ash content, pH, hardness, adhesiveness, chewiness etc.,
168 while simultaneously increasing moisture, amino acids, lightness, springiness, and water holding
169 capacity. These results suggest that oyster mushrooms are very effective as a functional material
170 that can supplement the structural characteristics and storage stability of conventional meat
171 processing materials. Oyster mushrooms in various forms are used to develop fortified functional
172 foods. *P. ostreatus* was incorporated in various forms, such as powder after drying and grinding,
173 fresh after steaming and centrifuging, flour after boiling in water, aqueous extract, and cell-free
174 extracts of mushrooms. Moreover, their concentration, waste, and bioactive compounds can be
175 incorporated into meat products (Bulam et al., 2022).

176

177 **4.2 Effects on functional characteristics and sensory quality**

178 The addition of oyster mushroom powder positively affects taste and texture aspects while
179 improving product nutritional quality (Jung et al., 2022). Particularly, functional effects extend
180 beyond simple nutritional component improvement to product quality and shelf-life extension.
181 According to Tokarczyk et al. (2023), products added oyster mushrooms showed decreased final
182 fat content and increased inhibition of lipid oxidation. This is very advantageous for developing
183 products with two benefits simultaneously, such as fat content reduction and improvement of
184 oxidation stability and can provide practical help in improving the long-term preservation of
185 health-oriented meat products. Additionally, products with 2% oyster mushroom powder added
186 showed increased protein adsorption at the fat interface, forming a sophisticated emulsion structure,
187 which consequently led to improved texture and reduced cooking loss (Jung et al., 2022). Such
188 emulsion stability improvement is a core technical element for formulation optimization and
189 quality maintenance of functional products.

190

191 **4.3 Application cases by product type: Sausages, patties**

192 Oyster mushroom powder is being successfully applied to various meat products, with sausages
193 being the most actively researched item. Jung et al. (2022) reported the possibility of oyster
194 mushroom addition up to 2%, developing innovative oyster mushroom-based sausage products
195 optimized based on protein, antioxidant activity, total phenol content, cohesiveness, energy, fat,
196 hardness, adhesiveness, etc. (Table 2).

197 Rohmawati et al. (2019) manufactured analog sausages with a formulation combining 75g tempeh,
198 75g white oyster mushroom, and 6g carrageenan. The result of the chemical composition of the
199 product was 14% protein, 11.22% fat, 44.24% moisture, 6.02% crude fiber, 2.37% ash, and 27.29%
200 carbohydrate, respectively. Burgers also have high application potential. Tokarczyk et al. (2023)
201 reported that oyster mushrooms contributed antioxidant properties and sensory appeal of the
202 products, showing positive results in terms of consumer preference and quality maintenance.

203

204 **5. Sensory characteristics and consumer acceptance**

205 **5.1 Flavor, texture, and appearance characteristics of meat products with oyster mushroom**

206 Research on the sensory characteristics of mushrooms includes various sensory expressions
207 beyond simply “umami” (Oh et al., 2024). For example, expressions such as fermented, yeasty,
208 moldy, earthy, crispy, firm, sweet, savory, moist, and salty have been used as sensory descriptors
209 related to various types of mushrooms (Jiang et al., 2023). When oyster mushroom is added to
210 meat products, the complex flavors and textures show multilayered effects on the overall sensory
211 characteristics of the products. Jung et al. (2022) reported that sensory evaluation of sausages with
212 2% *Pleurotus ostreatus* addition recorded superior scores in flavor and aroma, and the overall
213 preference of the product was higher than the control group (Figure 2). This result suggests that
214 positive maximization of sensory characteristics is possible at specific addition ratios. However,
215 Tokarczyk et al. (2023) noted that burgers with 10% oyster mushroom addition had the highest
216 acceptability score (4.86 points), while the 20% addition group showed a lower score (3.57 points).
217 Consistent with these observations, Figure 2 indicates that water-holding capacity increased up to
218 2% addition. This trend supports that moderate incorporation levels may provide an optimal
219 balance between sensory appeal and technological functionality, emphasizing the importance of
220 appropriate formulation design.

221

222 **5.2 Sensory evaluation methodology**

223 Consumer acceptability is generally evaluated through hedonic tests, which quantitatively measure
224 not only overall preference but also likes and dislikes for individual sensory characteristics (flavor,
225 aroma, texture, etc.) (Fiorentini et al., 2020). Descriptive analysis is used to describe the sensory
226 profile of products qualitatively and quantitatively, and it is effective in distinguishing subtle

227 differences between products (Siddiqui et al., 2023). Traditional sensory analysis is broadly
228 divided into analytical and affective methods. Analytical evaluation includes discriminatory and
229 descriptive evaluation, while affective evaluation is divided into preference tests and hedonic tests
230 (Ruiz-Capillas et al., 2021). These evaluation methods were utilized in various studies on
231 mushroom-enriched meat products, with sensory characteristics highly evaluated at specific
232 addition levels, and consumer acceptability was also secured. Such data functions as core material
233 enabling sensory optimization and consumer-centered design in product development.

234

235 **5.3 Consumer preference and market insights**

236 Plant-based proteins carry challenges in consumer acceptability aspects, particularly in sensory
237 characteristics such as appearance, flavor, and texture (Appiani et al., 2023). According to
238 Appiani et al. (2023), plant-based meat alternative products tend to show lower overall sensory
239 satisfaction, making consumer acceptability difficult to secure in many cases. This emphasizes
240 the importance of sensory optimization strategies in developing hybrid meat products, including
241 oyster mushrooms. Recent study has shown that the incorporation of oyster mushroom powder
242 into chicken patties can improve sensory qualities such as color attributes while enhancing
243 antioxidant activity (Cerón-Guevara et al., 2020a). Although optimal inclusion levels may vary
244 by product type, previous studies suggest that moderate additions of oyster mushroom powder
245 can improve sensory attributes without negatively affecting consumer acceptance (Das et al.,
246 2021).

247

248 **6. Food safety, additives, and regulatory considerations**

249 **6.1 Role as a natural additive and preservation effects**

250 Multiple studies have developed pork sausages with oyster mushroom puree added, with such an
251 addition reported to increase product moisture content, springiness, and water holding capacity,
252 while conversely decreasing protein content (Jung et al., 2022). This demonstrates the possibility
253 that oyster mushrooms can function as both a functional food material and a natural preservative.
254 Naturally derived antimicrobial compounds contained in oyster mushrooms can enhance food
255 safety through various mechanisms (Dash et al., 2024). According to Das et al. (2021), dehydrated
256 oyster mushrooms were effective in inhibiting lipid and protein oxidation in meat products. This
257 provides favorable conditions for oxidation prevention and quality maintenance, becoming an
258 alternative that can reduce the use of synthetic additives. Additionally, according to research,
259 antimicrobial components of oyster mushrooms were found to show broad-spectrum antimicrobial
260 effects against bacteria, fungi, viruses, and gastrointestinal parasites (Elhusseiny et al., 2021;
261 Giacometi et al., 2022; Sitara et al., 2023). When oyster mushroom powder is added to raw or
262 cooked pork patties, various quality characteristics, including pH, water holding capacity, cooking
263 loss, texture, color, and lipid and protein oxidation inhibition, were reported to be significantly
264 improved ($p<0.05$) (Torres-Martínez et al., 2022).

265

266 **6.2 Microbiological and chemical safety**

267 Food poisoning from mushrooms generally originates from natural toxin ingestion, but pathogenic
268 microbial contamination that can occur during production and processing also requires attention.
269 Generally, pathogens such as *Listeria monocytogenes* and *Salmonella* spp. are identified as major
270 risk factors (Ludewig et al., 2024). In 2022, there was recalling of king oyster mushrooms sold
271 under the TWA Fungi brand because of possible contamination with *L. monocytogenes* (Beach,
272 2022). The U.S. Food and drug administration (FDA) and the centers for disease control and
273 prevention (CDC) investigated the first known outbreak of *Listeria monocytogenes* linked to enoki
274 mushrooms from 2016 to 2020. Subsequently, both FDA and CDC reported a second outbreak in
275 2022 (U.S. Food and Drug Administration, 1994). The 2022 outbreak included six ill people, all
276 of whom were hospitalized (Kirchner et al., 2025). Food contaminated with *L. monocytogenes* may
277 not show any signs of spoilage, but can cause serious illness, especially in pregnant women, older
278 adults, and those with weakened immune systems (Beach, 2022). To reduce the risk of listeriosis
279 from contaminated mushrooms, public health and regulatory agencies should conduct
280 comprehensive surveillance in foods and in people and implement control measures to potentially
281 minimize the impact of future outbreaks (Kirchner et al., 2025). According to Schill et al.
282 (2021) some samples had low contamination levels with total aerobic mesophilic bacteria counts
283 (AMC) below 5.0 log cfu/g, but quality gradually decreased when stored at 4°C for 12 days. At
284 the time of purchase, 71.2% of all samples had excellent microbiological quality levels (AMC <
285 5.0 log cfu/g), and 67.1% of sensory quality was evaluated as 'very good or good'. This suggests
286 that appropriate storage conditions and hygiene management are essential for securing microbial
287 safety of oyster mushroom-enriched products.

288

289 **6.3 Legal status and labeling requirements**

290 Regulatory issues for mushrooms as functional foods and dietary supplements stem from the
291 need for consistent international standards, improved quality control, and effective consumer
292 protection (Roberfroid, 2002). Functional mushrooms used as dietary supplements must comply
293 with the Dietary Supplement Health and Education Act in the United States (Borchers et al.,
294 2008). In the European Union, the implementation of the Novel Foods Regulation (EU)
295 2015/2283 and associated practical guidance documents help food business operators determine
296 the regulatory status of their products, including food supplements and their ingredients
297 (Lähteenmäki-Uutela et al., 2021). Furthermore, the application of the Nutrition and Health
298 Claims Regulation (EC) No 1924/2006 is essential for food business operators, as it sets out the
299 requirements for making nutrition and health claims on foods (Kušar et al., 2021) as summarized
300 in Table 3.

301

302 **7. Challenges and future perspectives**

303 **7.1 Technical and economic challenges in industrialization**

304 Functional meat products utilizing oyster mushrooms show high potential as a food development
305 strategy, simultaneously pursuing health and sustainability, but realistic barriers exist for industrial
306 mass production. One of the biggest challenges is securing uniform raw material quality and the
307 uncertainty of mass supply. These challenges are closely linked to the short shelf-life of
308 mushrooms, as they rapidly deteriorate in quality after harvest and have high moisture content,
309 raising significant concerns about spoilage during storage and distribution before processing
310 (Sołowiej et al., 2023).

311 Additionally, while dietary fiber and polysaccharides of oyster mushroom positively affect
312 emulsification and viscosity control, quality problems such as texture degradation, preference
313 decline, and increased spoilage risk during storage are accompanied when addition ratios are
314 excessive. Therefore, precise formulation ratio setting and process standardization are essential for
315 product optimization. From an economic perspective, considering cost and processing complexity,
316 when considering production unit cost, storage stability, and processing costs, cost efficiency may
317 be unfavorable compared to existing meat processing materials, and constraints on widespread
318 adoption may occur, particularly in price-sensitive markets. Additionally, regulatory labeling
319 constraints must be carefully navigated to ensure compliance and consumer trust. Therefore,
320 government functional ingredient certification systems, technical support, and policies linking
321 processing facilities can become core foundations for industrial expansion (Boylu et al., 2024).

322

323 **7.2 Consumer perception, cultural acceptance, and marketing challenges**

324 Consumer acceptability and market expansion are greatly influenced by cultural familiarity, eating
325 habits, and marketing communication beyond technical aspects. Variable sensory acceptance
326 represents a significant barrier, as some consumers show aversion to the earthy smell or tannin-
327 like flavor of mushrooms, perceiving them unsuitable for processed meat (Tokarczyk et al., 2023).
328 Limited consumer familiarity with mushroom-enriched meat products further restricts market
329 penetration. To address these issues, consumer-oriented sensory studies and preference-based
330 product design must be integrated early in development. Marketing efforts should convey the
331 concept that oyster mushroom is not merely a vegetable but a functional meat ingredient. However,
332 as shown in Figure 3, these products also present meaningful opportunities. Mushroom enrichment
333 enhances the nutritional profile by increasing dietary fiber and vitamin D, serves as a natural fat
334 replacement and antioxidant source, and aligns with clean-label trends. These characteristics
335 appeal to flexitarian and eco-conscious consumers seeking health, taste, and sustainability.
336 Moreover, oyster mushroom cultivation supports circular economy principles by utilizing agro-
337 waste, thereby adding environmental and economic value to the final meat products (Das et al.,
338 2021; Singh et al., 2023).

339

340 **7.3 Future research directions and policy recommendations**

341 To maximize these opportunities while addressing the technical and regulatory barriers outlined
342 above, future research and policy development should focus on several strategic directions aligned
343 with health, sustainability, and consumer trust (Figure 3). Research should establish scientific
344 evidence for increased fiber and vitamin D content to substantiate health claims and enable
345 functional labeling. Design of Experiments (DOE)-based formulation studies can help balance
346 nutritional efficacy and sensory quality (Jung et al., 2022). Regulatory frameworks such
347 as European community regulation (EC) No 1924/2006 on nutrition and health claims made on
348 foods and European union regulation (EU) 2015/2283 on novel foods should be referenced to
349 facilitate classification of oyster mushrooms within functional food categories. Further
350 development of low-cost drying and powdering technologies is needed to preserve bioactive
351 compounds and improve raw material storage stability (Jung et al., 2022). Such innovations are
352 vital for maintaining product palatability and reliable supply chains. Research should emphasize
353 minimal processing and transparent labeling, ensuring compliance with microbial safety standards
354 (< 5.0 log CFU/g *Listeria, Salmonella*) (Meng et al., 2024). Education and marketing strategies
355 should target flexitarian and eco-conscious consumers, highlighting health, sustainability, and
356 safety aspects. Campaigns must differentiate mushroom-enriched meat products from dietary
357 supplements while reinforcing safety regarding heavy metals, pesticide residues, and mycotoxins.
358 Expanding agro-waste utilization for mushroom cultivation and conducting life cycle assessment
359 (LCA) studies will help quantify environmental benefits (Grimm & Wösten, 2018; Robinson et al.,
360 2019). Integrating these outcomes into regional agriculture–food-linked policy models will create
361 sustainable and economically viable production ecosystems aligned with consumer and regulatory
362 expectations.

363

364 **8. Conclusion**

365 This literature review comprehensively examined the development potential and application cases
366 of meat products utilizing oyster mushroom (*Pleurotus ostreatus*), focusing on its nutritional,
367 functional, and technical characteristics. Oyster mushrooms contain high-quality protein, abundant
368 dietary fiber, and bioactive compounds, including antioxidant and antimicrobial functions, which
369 can positively affect nutritional enrichment, fat replacement, oxidation stability improvement, and
370 sensory quality improvement of meat products. Various studies showed that the oyster mushroom
371 addition ratio generally forms optimal technical and sensory balance at approximately 10-20%
372 levels. At these addition levels, multifaceted improvement effects such as fat content reduction,
373 water holding capacity improvement, and antioxidant capacity increase were observed, with
374 sensory preference also maintained or rather improved in some product categories (e.g., sausages,
375 burgers, chicken patties). Meanwhile, technical limitations and cost challenges related to
376 industrialization, consumer perception issues, and regulatory and labeling requirements remain as
377 elements requiring practical solutions. Particularly, standardized processing technology
378 development, microbiological safety securing, and functional labeling certification system
379 construction will become important research and policy tasks for the commercialization of oyster

380 mushroom-based meat products. Overall, oyster mushrooms are a very promising food ingredient
381 for developing functional meat products and are a strategic resource that can satisfy triple
382 consumer demands of health, sustainability, and sensory quality. Future research and industrial
383 applications will require scientific evidence-based design and convergent approaches to realize
384 these multilayered potentials.

385

ACCEPTED

386 **References**

- 387 1. Aditya, Neeraj, Jarial RS, Jarial K, Bhatia JN. 2024. Comprehensive review on oyster
388 mushroom species (Agaricomycetes): Morphology, nutrition, cultivation, and future
389 aspects. *Helicon*, 10(5):e26539. <https://doi.org/10.1016/j.heliyon.2024.e26539>
- 390 2. Akcay C, Ceylan F, Arslan R. 2023. Production of oyster mushroom (*Pleurotus*
391 *ostreatus*) from some waste lignocellulosic materials and FTIR characterization of
392 structural changes. *Sci Rep* 13:12897. <https://doi.org/10.1038/s41598-023-40200-x>
- 393 3. Amarasinghe AALS, Weerasinghe MPGS M, Dunsford LB. 2025. Economic and
394 environmental sustainability of oyster mushroom (*Pleurotus ostreatus*) cultivation
395 using agro-industrial waste substrates. In Proceedings of International Forestry and
396 Environment Symposium (Vol. 29).
- 397 4. Appiani M, Cattaneo C, Laureati M. 2023. Sensory properties and consumer
398 acceptance of plant-based meat, dairy, fish and eggs analogs: A systematic review.
399 *Front Sustain Food Syst* 7:1268068. <https://doi.org/10.3389/fsufs.2023.1268068>
- 400 5. Argaw B, Tesfay T, Godifey T, Ayalew N. 2023. Growth and yield performance of
401 oyster mushroom (*P. ostreatus* (Jacq.: Fr.) Kummer) using waste leaves and sawdust.
402 *Int J Agron* 2023:8013491. <https://doi.org/10.1155/2023/8013491>
- 403 6. Ayuso P, Quizhpe J, Peñalver R, García-Pérez P, Nieto G. 2025. Green valorization
404 strategies of *Pleurotus ostreatus* and its by-products: A critical review of emerging
405 technologies and sustainable applications. *Molecules* 30:4318.
406 <https://doi.org/10.3390/molecules30214318>
- 407 7. Barh A, Sharma VP, Kumari B, Annepu SK, Kamal S, Bairwa R. 2019. Round the year
408 cultivation of *Pleurotus* species in India. *Mushroom Research*, 28(2):139-143.
- 409 8. Beach C. 2022. Canadian agency posts recall of king oyster mushrooms because of
410 Listeria. *Food Safety News*. Available
411 from: <https://www.foodsafetynews.com/2022/07/canadian-agency-posts-recall-of-king-oyster-mushrooms-because-of-listeria/> Accessed at Jan 30. 2025.
- 412 9. Borchers AT, Krishnamurthy A, Keen CL, Meyers FJ, Gershwin ME. 2008. The
413 immunobiology of mushrooms. *Exp Biol Med* 233(3):259-276.
414 <https://doi.org/10.3181/0708-MR-227>
- 415 10. Boro S, Kambhampati V, Das S, Saikia D. 2025. Edible mushrooms as meat analogues:
416 A comprehensive review of nutritional, therapeutic, and market potential. *Food Res Int*
417 214:116632. <https://doi.org/10.1016/j.foodres.2025.116632>
- 418 11. Boylu M, Hitka G, Kenesei G. 2024. Sausage quality during storage under the partial
419 substitution of meat with fermented oyster mushrooms. *Foods* 13(13):2115.
420 <https://doi.org/10.3390/foods13132115>
- 421 12. Bulam S, Üstün NŞ, Pekşen A. 2022. Oyster mushroom (*Pleurotus ostreatus*) as a
422 healthy ingredient for sustainable functional food production. *Mantar Dergisi(The
423 Journal of Fungus)* 13(3):131-143. <https://doi.org/10.30708/mantar.1192063>

425 13. Cerón-Guevara MI, Rangel-Vargas E, Lorenzo JM, Bermúdez R, Pateiro M, Rodríguez
426 JA, Sánchez-Ortega I, Santos EM. 2020a. Effect of the addition of edible mushroom
427 flours (*Agaricus bisporus* and *Pleurotus ostreatus*) on physicochemical and sensory
428 properties of cold-stored beef patties. *J Food Process Preserv* 44(3), e14351.

429 14. Cerón-Guevara MI, Rangel-Vargas E, Lorenzo JM, Bermúdez R, Pateiro M, Rodríguez
430 JA, Sánchez-Ortega I, Santos EM. 2020b. Reduction of salt and fat in frankfurter
431 sausages by addition of *Agaricus bisporus* and *Pleurotus ostreatus* flour. *Foods*
432 9(6):760. <https://doi.org/10.3390/foods9060760>

433 15. Chilanti G, Todescatto K, Andrade LB, Branco CS, Salvador M, Camassola M,
434 Fontana RC, Dillon AJP. 2021. Polyphenolic content and antioxidant activity of
435 mycelia and basidiomes of oyster mushrooms *Pleurotus spp.* (Agaricomycetes) from
436 Brazil. *Int J Med Mushrooms* 23(6):13–23.
437 <https://doi.org/10.1615/IntJMedMushrooms.2021038447>

438 16. Das AK, Nanda PK, Dandapat P, Bandyopadhyay S, Gullón P, Sivaraman GK,
439 McClements DJ, Gullón D, Lorenzo JM. 2021. Edible mushrooms as functional
440 ingredients for development of healthier and more sustainable muscle foods: A
441 flexitarian approach. *Molecules* 26(9), 2463.

442 17. Dash P, Kar B, Gochhi M, Ghosh G, Rai VK, Das C, Pradhan D, Rajwar TK, Halder J,
443 Dubey D, Manoharadas S, Rath G. 2024. Antimicrobial properties of the edible pink
444 oyster mushroom, *Pleurotus eous*: In-vivo and In-vitro studies. *Microbial Pathogen*
445 196:106915.

446 18. Effiong ME, Umeokwochi CP, Afolabi IS, Chinedu SN. 2024. Assessing the nutritional
447 quality of *Pleurotus ostreatus* (oyster mushroom). *Front Nutr* 10:1279208.
448 <https://doi.org/10.3389/fnut.2023.1279208>

449 19. Elhusseiny SM, El-Mahdy TS, Awad MF, Elleboudy NS, Farag MM, Aboshanab K.
450 M, Yassien MA. 2021. Antiviral, cytotoxic, and antioxidant activities of three edible
451 agaricomycetes mushrooms: *Pleurotus columbinus*, *Pleurotus sajor-caju*, and
452 *Agaricus bisporus*. *J Fungi* 7(8):645.

453 20. Fiorentini M, Kinchla AJ, Nolden AA. 2020. Role of sensory evaluation in consumer
454 acceptance of plant-based meat analogs and meat extenders: A scoping review. *Foods*
455 9(9):1334.

456 21. Fitsum S, Sbhatu DB, Gebreyohannes G. 2025. Harnessing the nutritional value,
457 therapeutic applications, and environmental impact of mushrooms. *Food Sci Nutr*
458 13(7):e70611. <https://doi.org/10.1002/fsn3.70611>

459 22. Geiker NRW, Bertram HC, Mejborn H, Dragsted LO, Kristensen L, Carrascal JR,
460 Bügel S, Astrup A. 2021. Meat and human health—Current knowledge and research
461 gaps. *Foods* 10(7):1556. <https://doi.org/10.3390/foods10071556>

462 23. Giacometi M, Gressler LT, dos Santos Petry L, de Matos AFIM, Dillmann JB, Dos
463 Santos TS, Santi EMT, de Mello AB, Ourique A, Monteiro SG. 2022. Antioxidant and

nematocidal effects of several oyster mushroom species of genus *Pleurotus* (Agaricomycetes). *Int J Med Mushrooms* 24(6): 35-45.

24. Girmay Z, Gorems W, Birhanu G, Zewdie S. 2016. Growth and yield performance of *Pleurotus ostreatus* (Jacq. Fr.) Kumm (oyster mushroom) on different substrates. *AMB Express* 6(1):87. <https://doi.org/10.1186/s13568-016-0265-1>

25. Giusti A, Tinacci L, Verdigi F, Narducci R, Gasperetti L, Armani A. 2022. Safety and commercial issues in fresh mushrooms and mushroom-based products sold at retail in Tuscany region. *Italian J Food Safety* 11(3):10044.

26. Grimm D, Wösten HAB. 2018. Mushroom cultivation in the circular economy. *Appl Microbiol Biotechnol* 102:7795–7803. <https://doi.org/10.1007/s00253-018-9226-8>

27. Jiang C, Duan X, Lin L, Wu W, Li X, Zeng Z, Luo Q, Liu Y. 2023. A review on the edible mushroom as a source of special flavor: Flavor categories, influencing factors, and challenges. *Food Frontiers* 4(4):1561-1577. <https://doi.org/10.1002/fft2.263>

28. Jung DY, Lee HJ, Shin DJ, Kim CH, Jo C. 2022. Mechanism of improving emulsion stability of emulsion-type sausage with oyster mushroom (*Pleurotus ostreatus*) powder as a phosphate replacement. *Meat Sci* 194:108993. <https://doi.org/10.1016/j.meatsci.2022.108993>

29. Khezerlou A, Yekta R, Abedi-Firoozjah R, Alizadeh-Sani M, McClements DJ. 2025. Advances in sensory and nutritional innovation for sustainable plant-based meat analogs: A comprehensive review. *Food Rev Int* 1–26. <https://doi.org/10.1080/87559129.2025.2520448>

30. Kirchner M, Palacios A, Cataldo N, Allen KL, Wellman A, Madad A, Jemaneh T, Jackson T, Ingram DT, Wagoner V, Hatch R, Baugher J, Burall L, Nieves K, Low M, Pederson G, DiPrete L, Sepcic V, Thomas D, Lozinak K, Urban S, Shannon K, Kafka E, Lackey A, Edwards L, Rosen HE, Bond C, Needham M, Locas A, Markell A, Chau K, Kong A, Hamel M, Kearney A, Salter M, Gieraltowski L, Bazaco MC, Viazis S, Conrad A. 2025. A binational sample-initiated retrospective outbreak investigation of *Listeria monocytogenes* infections in the United States and Canada linked to enoki mushrooms imported from China 2022–2023. *J Food Prot* 88(1):100413. <https://doi.org/10.1016/j.jfp.2024.100413>

31. Kumla J, Suwannarach N, Sujarit K, Penkhruue W, Kakumyan P, Jatuwong K, Vadhanarat S, Lumyong S. 2020. Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agro-industrial waste. *Molecules* 25(12):2811. <https://doi.org/10.3390/molecules25122811>

32. Kušar A, Žmittek K, Lähteenmäki L, Raats MM, Pravst I. 2021. Comparison of requirements for using health claims on foods in the European Union, the USA, Canada, and Australia/New Zealand. *Compr Rev Food Sci Food Saf* 20(2):1307-1332. <https://doi.org/10.1111/1541-4337.12716>

503 33. Lähteenmäki-Uutela A, Rahikainen M, Lonkila A, Yang B. 2021. Alternative proteins
504 and EU food law. *Food Control* 130:108336.
505 <https://doi.org/10.1016/j.foodcont.2021.108336>

506 34. Lebeque Y, Morris HJ, Beltrán Y, Llaurado G, Gaime-Perraud I, Meneses M, Moukha
507 S, Bermúdez RC, Garcia N. 2018. Proximal composition, nutraceutical properties, and
508 acute toxicity study of culinary-medicinal oyster mushroom powder, *Pleurotus*
509 *ostreatus* (Agaricomycetes). *Int J Med Mushrooms* 20(12):1185–1195.
510 <https://doi.org/10.1615/IntJMedMushrooms.v20.i12.60>

511 35. Lesa KN, Khandaker MU, Mohammad Rashed Iqbal F, Sharma R, Islam F, Mitra S,
512 Emran TB. 2022. Nutritional value, medicinal importance, and health-promoting
513 effects of dietary mushroom (*Pleurotus ostreatus*). *J Food Qual* 2022:2454180.
514 <https://doi.org/10.1155/2022/2454180>

515 36. Ludewig M, Rattner J, Künz JJ, Wagner M, Stessl B. 2024. Quality and safety of dried
516 mushrooms available at retail level. *Appl Sci* 14(5):2208.

517 37. Mazlan MM, Talib RA, Chin NL, Shukri R, Taip FS, Mohd Nor MZ, Abdullah N. 2020.
518 Physical and microstructure properties of oyster mushroom–soy protein meat analog
519 via single-screw extrusion. *Foods* 9(8):1023. <https://doi.org/10.3390/foods9081023>

520 38. Meng B, Jang AR, Song HJ, Lee SY. 2024. Microbiological quality and safety of fresh
521 mushroom products at retail level in Korea. *Food Sci Biotechnol* 33:1261–1268.
522 <https://doi.org/10.1007/s10068-023-01385-z>

523 39. Mishra BP, Mishra J, Paital B, Rath PK, Jena MK, Reddy BVV, Pati PK, Panda SK,
524 Sahoo DK. 2023. Properties and physiological effects of dietary fiber-enriched meat
525 products: A review. *Front Nutr* 10:1275341.
526 <https://doi.org/10.3389/fnut.2023.1275341>

527 40. Mishra V, Tomar S, Yadav P, Singh MP. 2021. Promising anticancer activity of
528 polysaccharides and other macromolecules derived from oyster mushroom (*Pleurotus*
529 sp.): An updated review. *Int J Biol Macromol* 182:1628–1637.
530 <https://doi.org/10.1016/j.ijbiomac.2021.05.102>

531 41. Oh M, Ju JH, Ju S. 2024. What are the sensory attributes associated with consumer
532 acceptance of yellow oyster mushrooms (*Pleurotus citrinopileatus*)?. *Foods*
533 13(13):2061.

534 42. Pandey M, Gowda NKS, Satisha GC, Azeez S, Chandrashekara C, Zamil M, Roy TK.
535 2020. Studies on bioavailability of iron from Fe-fortified commercial edible mushroom
536 *Hypsizygus ulmarius* and standardization of its delivery system for human nutrition. *J*
537 *Hortic Sci* 15(2):197-206. <https://doi.org/10.24154/jhs.v15i2.950>

538 43. Park G, Oh S, Park S, Kim YA, Park Y, Kim Y, Lee J, Lee H, Choi J. 2023.
539 Physicochemical characteristics and storage stability of hybrid beef patty using shiitake
540 mushroom (*Lentinus edodes*). *J Food Quality* 2023(1), 7239709.

541 44. Patinho I, Selani MM, Saldaña E, Teixeira Bortoluzzi AC, Rios-Mera JD, da Silva CM,
542 Kushida MM, Contreras-Castillo CJ. 2021. *Agaricus bisporus* mushroom as partial fat
543 replacer improves the sensory quality maintaining the instrumental characteristics of
544 beef burger. *Meat Sci* 172:108307. <https://doi.org/10.1016/j.meatsci.2020.108307>

545 45. Pérez-Montes A, Rangel-Vargas E, Lorenzo JM, Romero L, Santos EM. 2021. Edible
546 mushrooms as a novel trend in the development of healthier meat products. *Curr Opin*
547 *Food Sci* 37:118–124. <https://doi.org/10.1016/j.cofs.2020.10.004>

548 46. Philippoussis A, Zervakis G, Diamantopoulou P. 2001. Bioconversion of agricultural
549 lignocellulosic wastes through the cultivation of the edible mushrooms *Agrocybe*
550 *aegerita*, *Volvariella volvacea* and *Pleurotus* spp. *World J Microbiol Biotechnol*
551 17:191–200. <https://doi.org/10.1023/A:1016685530312>

552 47. Roberfroid MB. 2002. Functional foods: concepts and application to inulin and
553 oligofructose. *Br. J. Nutr.* 87(S2):S139-S143.
554 <https://doi.org/10.1079/BJNBJN/2002529>

555 48. Robinson B, Winans K, Kendall A, Dlott J, Dlott F. 2019. A life cycle assessment of
556 *Agaricus bisporus* mushroom production in the USA. *Int J Life Cycle Assess* 24:456–
557 467. <https://doi.org/10.1007/s11367-018-1456-6>

558 49. Rohmawati S, Mustofa A, Widanti YA. 2019. Analogue sausage formulation of
559 tempeh-white oyster mushrooms (*Pleurotus ostreatus*) with the addition of carrageenan.
560 *Food Scien Tech Journal* 1(1):24-30. <https://doi.org/10.33512/fsj.v1i1.6194>

561 50. Ruiz-Capillas C, Herrero AM, Pintado T, Delgado-Pando G. 2021. Sensory analysis
562 and consumer research in new meat products development. *Foods* 10(2):429.
563 <https://doi.org/10.3390/foods10020429>

564 51. Sánchez C. 2010. Cultivation of *Pleurotus ostreatus* and other edible mushrooms.
565 *Appl Microbiol Biotechnol* 85(5):1321–1337. <https://doi.org/10.1007/s00253-009-2343-7>

566 52. Schill S, Stessl B, Meier N, Tichy A, Wagner M, Ludewig M. 2021. Microbiological
567 safety and sensory quality of cultivated mushrooms (*Pleurotus eryngii*, *Pleurotus*
568 *ostreatus*, and *Lentinula edodes*) at retail level and post-retail storage. *Foods*, 10(4):816.
569 <https://doi.org/10.3390/foods10040816>

570 53. Siddiqui SA, Bahmid NA, Mahmud CMM, Boukid F, Lamri M, Gagaoua M. 2023.
571 Consumer acceptability of plant-, seaweed-, and insect-based foods as alternatives to
572 meat: A critical compilation of a decade of research. *Crit Rev Food Sci Nutr*
573 63(23):6630-6651. <https://doi.org/10.1080/10408398.2022.2036096>

574 54. Singh U, Tiwari P, Kelkar S, Kaul D, Tiwari A, Kapri M, Sharma S. 2023. Edible
575 mushrooms: A sustainable novel ingredient for meat analogs. *Efood* 4(6):e122.
576 <https://doi.org/10.1002/efd2.122>

577 55. Sitara U Baloch PA, Pathan AUK, Bhatti MI, Bhutto MA, Ali QM, Ali A, Iqbal M.
578 2023. *In vitro* studies to determine antibacterial and antifungal properties of three
579 *Pleurotus* species (oyster mushroom). *Pak J Bot* 55(1):387-392.

580

581 56. Sołowiej BG, Nastaj M, Waraczewski R, Szafrańska JO, Muszyński S, Radzki W,
582 Mleko S. 2023. Effect of polysaccharide fraction from oyster mushroom (*Pleurotus*
583 *ostreatus*) on physicochemical and antioxidative properties of acid casein model
584 processed cheese. *Int Dairy J* 137:105516.
585 <https://doi.org/10.1016/j.idairyj.2022.105516>

586 57. Tokarczyk G, Felisiak K, Adamska I, Przybylska S, Hrebień-Filisińska A, Biernacka
587 P, Bienkiewicz G, Tabaszewska M. 2023. Effect of oyster mushroom addition on
588 improving the sensory properties, nutritional value, and increasing the antioxidant
589 potential of carp meat burgers. *Molecules* 28(19):6975.
590 <https://doi.org/10.3390/molecules28196975>

591 58. Torres-Martínez BDM, Vargas-Sánchez RD, Torrescano-Urrutia GR, Esqueda M,
592 Rodríguez-Carpena JG, Fernández-López J, Pérez-Alvarez JA, Sánchez-Escalante A.
593 2022. *Pleurotus* genus as a potential ingredient for meat products. *Foods* 11(6):779.
594 <https://doi.org/10.3390/foods11060779>

595 59. U.S. Department of Agriculture, Agricultural Research Service. 2023. Food Data
596 Central. Available from: <https://fdc.nal.usda.gov/food-details/1999627/nutrients>

597 60. U.S. Food and Drug Administration. 1994. Dietary Supplement Health and Education
598 Act of 1994 (DSHEA), Public Law 103–417. National Institutes of Health, Office of
599 Dietary Supplements. Available from:
600 https://ods.od.nih.gov/About/DSHEA_Wording.aspx

601 61. Wan Rosli WI, Solihah MA, Mohsin SSJ. 2011. On the ability of oyster mushroom
602 (*Pleurotus sajor-caju*) conferring changes in proximate composition and sensory
603 evaluation of chicken patty. *Int Food Res J* 18(4):1463–1469.
604 <http://eprints.usm.my/id/eprint/32638>

605

606 **Tables and Figures**

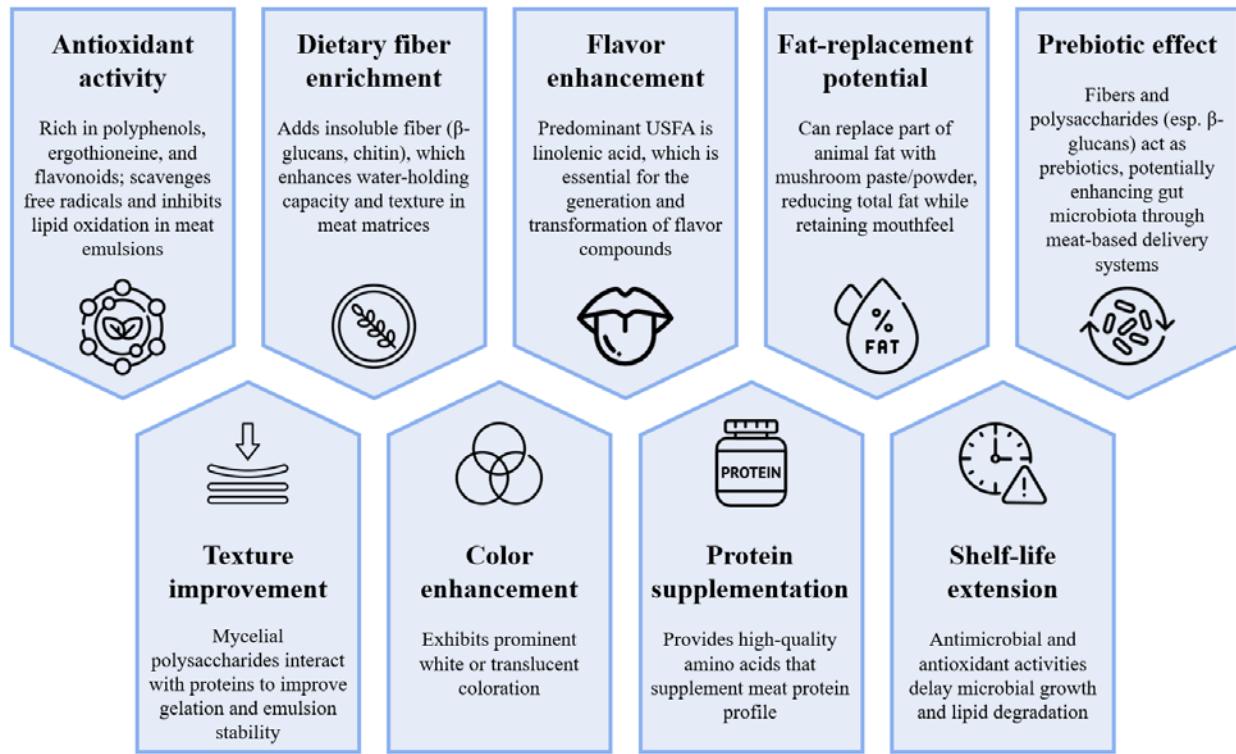
607

608 **Table 1. Nutritional comparison of oyster mushrooms and conventional meat ingredients**

Nutrient	Oyster mushroom	Beef (lean, cooked)	Pork (ground, raw)	Chicken (ground, with additives, raw)	References
Energy (kcal/100g)	38	219	233	138	
Protein (g/100g)	2.41	27.3	17.8	17.9	U.S.
Total fat (g/100g)	0.31	10.5	17.5	7.16	Department of
Saturated fat (g/100g)	0.12	4.68	6.28	1.56	Agriculture,
Dietary fiber (g/100g)	3.0	0.0	0.0	0.0	Agricultural
Iron (mg/100g)	0.34	3.53	0.79	0.59	Research
Potassium (mg/100g)	420	283	318	302	Service (2023)
Vitamin D (mg/100g)	2.8	0.0	0.0	0.0	

609

610 **Table 2. Summary of meat products enriched with oyster mushrooms: type, level, and**
 611 **outcomes**

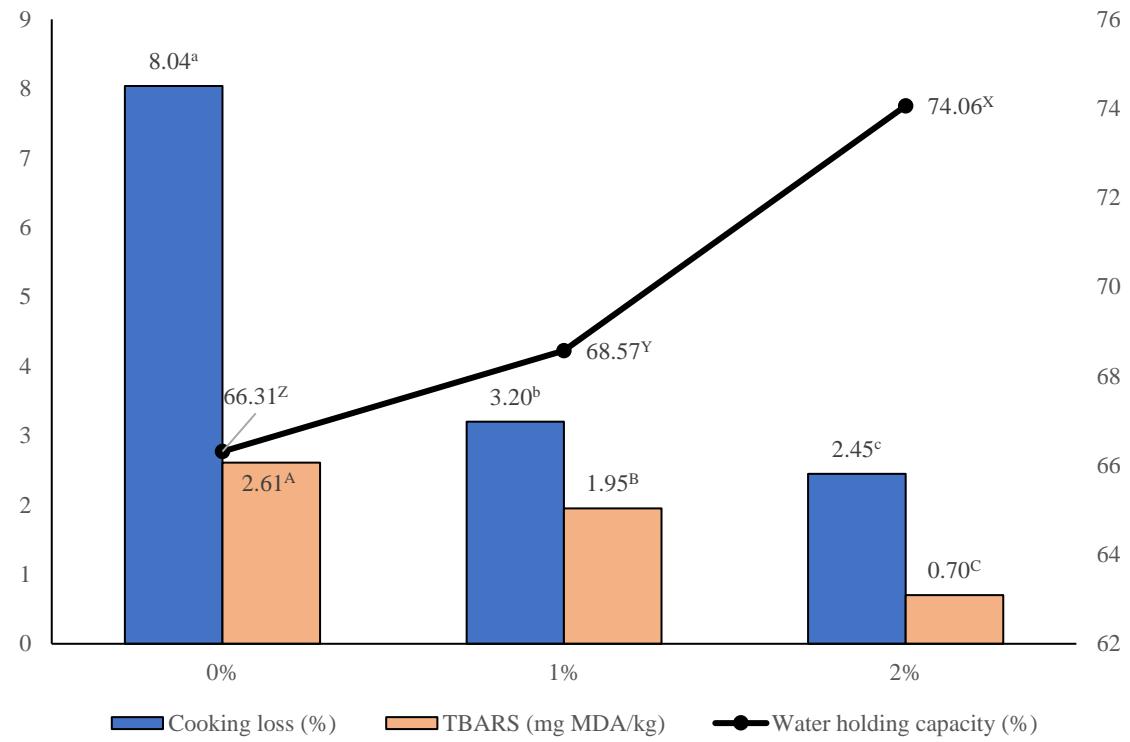

Product Type	Mushroom addition Level (%)	Observed functional outcomes	References
Emulsion type sausage	1%, 2%	<ul style="list-style-type: none"> - Improved emulsion stability - Increased viscosity - Enhanced water-holding capacity - Replaced phosphate usage 	Jung et al. (2022)
Beef burger	5%, 10%, 15%	<ul style="list-style-type: none"> - Reduced fat content - Maintained texture and color - Increased juiciness - Improved flavor and consumer acceptability 	Patinho et al. (2021)
Beef patty	20%, 40%, 60%, 80%	<ul style="list-style-type: none"> - Improved WHC and cooking loss - Negative effect on sensory properties and storage stability 	Park et al. (2023)
Frankfurter sausages	2.5%, 5%	<ul style="list-style-type: none"> - Resulted in softer and less cohesive sausages - Lowered color, flavor, and taste scores 	Cerón-Guevara et al. (2020b)

612

613 **Table 3. Regulatory status and food safety considerations for mushroom-enriched products**

Aspects	Considerations & Requirements	References
Microbiological safety	Compliance with EU regulations on hygiene practices during cultivation and processing is required (Reg. EC No. 852/2004).	
Labeling requirements	Scientific names must be correctly declared; cooking instructions are mandatory for raw mushrooms in retail (Reg. EU No. 1169/2011; PD No. 376/1995).	
Species identification & mislabeling	Several products on the EU market were found with incorrect or missing scientific names of mushroom species; this violates PD No. 376/1995.	
Control of wild-collected mushrooms	Specific training is required for individuals authorized to collect wild mushrooms; however, inconsistencies in certification and species authentication remain a challenge.	Giusti et al. (2022)
Regulatory approval	Food business operators must provide species identification certification. Regulatory oversight is based on PD No. 376/1995 and RL No. 16/1999.	
Storage and shelf-life	Fresh and cut mushrooms must be stored under refrigeration. Non-compliance has been frequently observed (Ministerial Decree No. 3746/2014; Reg. EC No. 852/2004).	

614

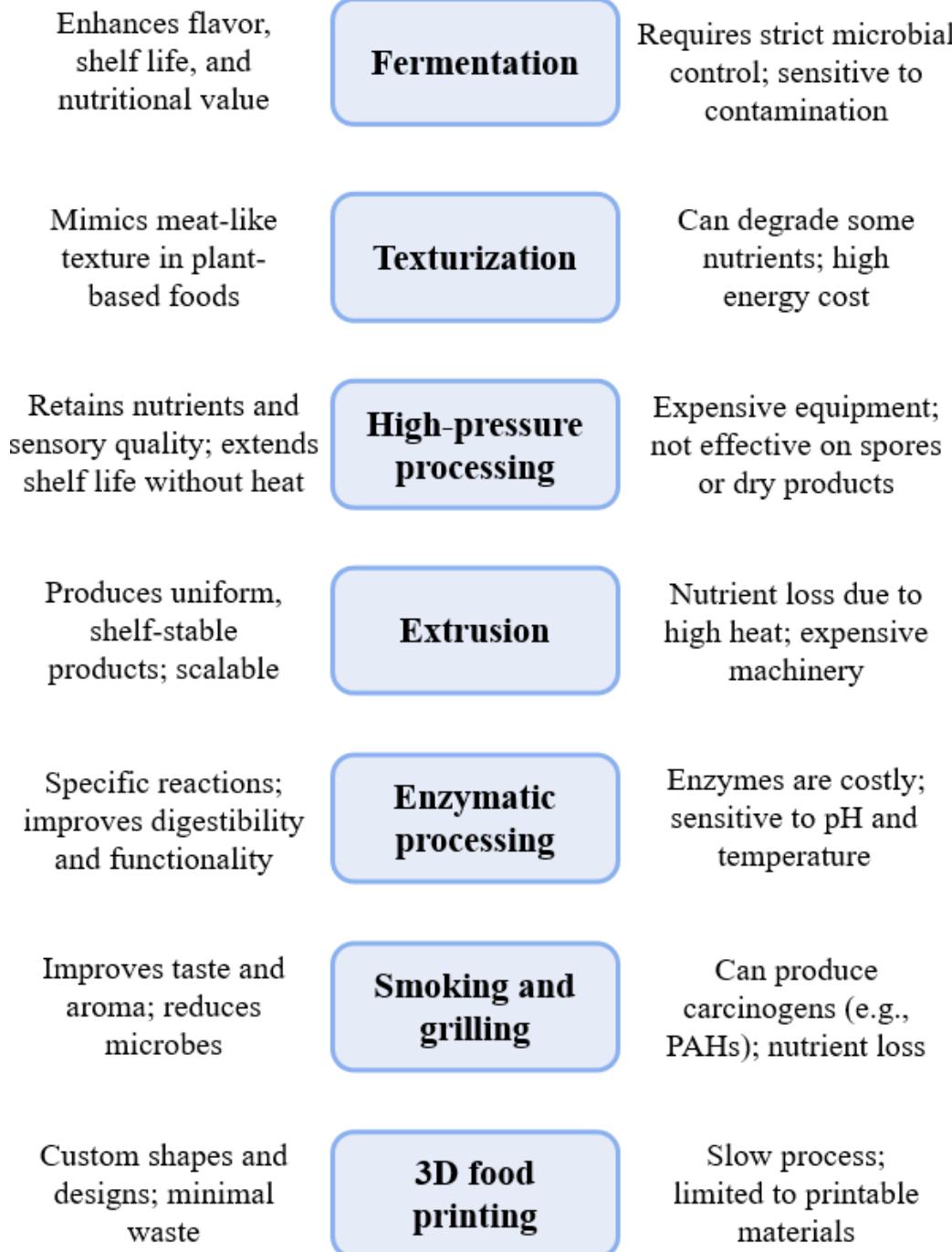


615

616 **Figure 1. Functional mechanisms of *Pleurotus ostreatus* in processed meat matrices.**

617 (Torres-Martínez et al., 2022).

618


Figure 2. For pork sausages enriched with oyster mushroom powder at different addition levels (0%, 1%, and 2%). (Jung et al., 2022).

^{a-c} Means with different superscripts within different treatments are significantly different (p<0.05).

^{A-C} Means with different superscripts within different treatments are significantly different (p<0.05).

^{X-Z} Means with different superscripts within different treatments are significantly different (p<0.05).

Opportunities ← Techniques → Challenges

629

630 **Figure 3. Challenges and opportunities in commercializing mushroom-enriched meat**
631 **products. (Pérez-Montes et al., 2021).**