

TITLE PAGE
- Food and Life-
Upload this completed form to website with submission

ARTICLE INFORMATION		Fill in information in each box below
Article Type	Review	
Article Title (English)	Proposing Standard Cutting and Fabrication Concepts for the Korean Goat Industry: An atomical, Practical, and Industrial Perspectives	
Article Title (Korean) English papers can be omitted		
Running Title (English, within 10 words)	Standardized Cutting Concept for the Korean Goat Industry	
Author (English)	Woo-Young Son ¹ , Jun Hwang ¹ , Yujeong Na ¹ , Juhui Youn ¹ , Joonhwan Choi ¹ , Cheonhwang Wi ¹ , Geunho Kang ² , Sun Moon Kang ² , Han Sul Yang ³ , Hyun-Wook Kim ^{1,4}	
Affiliation (English)	1 Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea 2 Animal Products Utilization, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea 3 Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju 52828, Republic of Korea 4 Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea	
Author (Korean) English papers can be omitted		
Affiliation (Korean) English papers can be omitted		
Special remarks – if authors have additional information to inform the editorial office		
ORCID and Position(All authors must have ORCID) (English) https://orcid.org	Woo-Young Son (Graduate Student, https://orcid.org/0009-0006-4567-3956) Jun Hwang (Graduate Student, https://orcid.org/0009-0009-5788-068X) Yujeong Na (Undergraduate Student, https://orcid.org/0009-0001-9684-5731) Juhui Youn (Undergraduate Student, https://orcid.org/0009-0002-2423-8964) Joonhwan Choi (Undergraduate Student, https://orcid.org/0009-0009-4796-1793) Cheonhwang Wi (Undergraduate Student, https://orcid.org/0009-0001-7589-0269) Geunho Kang (Researcher, https://orcid.org/0000-0002-6810-3239) Sun Moon Kang (Researcher, https://orcid.org/0000-0003-3947-4337) Han Sul Yang (Professor, https://orcid.org/0000-0001-6658-6364) Hyun-Wook Kim (Professor, https://orcid.org/0000-0003-0003-0368)	
Conflicts of interest (English) List any present or potential conflicts of interest for all authors. (This field may be published.)	The authors declare no potential conflict of interest.	
Acknowledgements (English) State funding sources (grants, funding sources, equipment, and	This study was supported by the Cooperative Research Program for Agricultural Science and Technology Development (Project No. RS-2025-02216992) of the Rural Development Administration, Republic of Korea.	

supplies). Include name and number of grant if available. (This field may be published.)	
Author contributions (This field may be published.)	Conceptualization: Kim HW, Yang HS, Kang SM, Kang G. Data Curation: Son WY, Hwang J, Youn J, Choi J, Wi C. Methodology: Kim HW, Yang HS, Kang SM, Kang G. Software: Son WY Validation: Kim HW. Investigation: Kim HW, Yang HS, Kang SM, Kang G. Writing - original draft: Son WY, Kim HW. Writing - review & editing: Son WY, Hwang J, Na Y, Youn J, Choi J, Wi C, Kang G, Kang SM, Yang HS, Kim HW. (This field must list all authors)
Ethics approval (IRB/IACUC) (English) (This field may be published.)	This manuscript does not require IRB/IACUC approval because there are no human and animal participants.

6

7

8 CORRESPONDING AUTHOR CONTACT INFORMATION

For the <u>corresponding</u> author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below
First name, middle initial, last name	Hyun-Wook Kim
Email address this is where your proofs will be sent	hwkim@gnu.ac.kr
Secondary Email address	Khw1097@gmail.com
Postal address	Gyeongsang National University, Jinju-daero 501, Jinju 52828
Cell phone number	82-10-9861-2017
Office phone number	82-55-751-3261
Fax number	82-55-751-3267

9

10

11 **Proposing Standard Cutting and Fabrication Concepts for the Korean Goat Industry:**

12 **Anatomical, Practical, and Industrial Perspectives**

13

14 **Abstract**

15 The Korean native black goat industry is transitioning from the use of black goats for
16 traditional medicinal purposes to meat production, driven by rising consumer demand for low-
17 fat, high-protein, and health-oriented foods. However, standardized carcass cutting and
18 fabrication systems are currently lacking, limiting industrial development. In this review we
19 outline the anatomical and industrial characteristics of native Korean black goats (*Capra hircus*
20 *coreanae*) and propose a framework for establishing species-specific cutting standards. Direct
21 application of beef or pork cutting systems is not suitable for black goats due to their small
22 carcass size and distinct muscle distribution. Currently, domestic carcass division is limited to
23 three major parts—the forequarter, middle body, and hindquarter—without unified guidelines,
24 leading to inconsistencies in classification, pricing, and distribution. Major goat-producing
25 countries including Australia and New Zealand have adopted standardized carcass grading and
26 cutting systems to improve product quality, consistency, and market competitiveness.
27 Therefore, we recommend a three-primal cutting and ten-subprimal fabrication framework,
28 reflecting the anatomical and market characteristics of Korean native black goats.
29 Implementing standardized fabrication criteria will enhance carcass utilization, ensure
30 transparent trade, and strengthen domestic and global competitiveness of the Korean goat
31 industry.

32

33 **Keywords:** Korean native black goat, carcass cutting and fabrication standardization,
34 anatomical and structural characteristics

36

37 **1. Introduction**

38 The Korean goat industry is at a turning point owing to the rapid expansion of production
39 scale and consumer demand for goat meat, with its production value increasing nearly three-
40 fold, from 59.5 billion Korean Won (KRW) in 2018 to 187.7 billion KRW in 2023 (KOSIS,
41 2023). This trend is mirrored in slaughter statistics, which increased from 284,121 head in 2015
42 to 572,305 head in 2019, and remained relatively high at 423,430 head in 2023 (MAFRA,
43 2024). Traditionally, goat meat in Korea has been consumed as a medicinal food, typically in
44 the form of hot water extracts with herbal ingredients (Choi et al., 2022). Following the
45 COVID-19 pandemic, its consumption as a health-promoting supplement has further increased,
46 reflecting growing public interest in immune system-enhancing products. In Korea, goat meat
47 has recently gained attention as a low-fat, high-protein meat resource, leading to the increased
48 demand for fresh lean cuts (Kim et al., 2019).

49 In the meat industry, traceability systems, carcass quality grading standards, and
50 standardized cutting and fabrication criteria collectively constitute a fundamental framework
51 for ensuring safe distribution, fair trade, transparency, industrial efficiency, and consumer
52 confidence in meat products (Kongsro et al., 2025). In Korea, livestock product management
53 is primarily regulated through national systems that oversee slaughter inspection, hygiene
54 control, and distribution traceability, including mandatory animal identification,
55 slaughterhouse inspection, and product labeling requirements. While these systems effectively
56 ensure food safety and traceability, they are mainly designed around carcass grading and
57 sanitary management, with limited emphasis on standardized cutting and fabrication criteria
58 for minor livestock species such as goats. After slaughter, livestock carcasses are partitioned
59 according to the established cutting and fabrication methods based on their anatomical and
60 physiological characteristics, including muscle structure and location and distribution of fat

61 and connective tissue, that directly influence the eating quality attributes of meat (Listrat et al.,
62 2016). Furthermore, the muscle fiber profile and connective tissue density are closely related
63 to meat tenderness and processing characteristics, making them key factors in determining the
64 appropriate cutting and fabrication criteria. Therefore, establishing standardized cutting and
65 fabrication criteria must reflect these intrinsic quality differences, which can maximize the
66 economic and informational value of each cut, while facilitating systematic distribution and
67 rational pricing throughout the market.

68 From a consumer perspective, standardized cutting and fabrication criteria affect purchase
69 decisions and shape the perception of meat quality (Glitsch et al., 2000). Specific and consistent
70 names and classification of cuts directly influence market demand by improving product
71 transparency and consumer perception clarity. Moreover, standardization systems considering
72 each country's culinary culture and cooking style enhance product acceptance and promote
73 trust in the domestic and international markets (Tibebu et al., 2024).

74 In Korea, however, standardized cutting and fabrication criteria, which serve as
75 fundamental guidelines for the efficient distribution and utilization of fresh goat meat, are
76 currently lacking, limiting industrial growth. Therefore, establishing standardized cutting and
77 fabrication systems specifically tailored to both intrinsic and extrinsic characteristics will
78 enhance product consistency, consumer trust, and industrial competitiveness. This review
79 proposes a conceptual framework that integrates anatomical, technological, consumer, and
80 industrial perspectives to guide practical and applicable standardized cutting and fabrication
81 criteria for Korean goat meat.

82

83 **2. Overview of Korean Native Black Goats**

84 Korean native black goats (*Capra hircus coreanae*) are indigenous breeds that have been
85 maintained for centuries to adapt to the Korean living environment. Their external appearance

86 is characterized by black hair, curved horns, and small body size, with an average mature
87 weight of 30–50 kg, lower than that of Boer goats and other commercial meat breeds (Kim et
88 al., 2019). Four distinct regional lineages of black goats, Dangjin, Jangsu, Gyeongsang
89 National University, and Tongyeong, have been identified, each reflecting adaptation to
90 specific local ecological and feeding conditions (Kang et al., 2023). Although relatively small
91 in body size, Korean native black goats exhibit strong disease resistance, efficient feed
92 utilization, and high survival in mountainous and low-input farming systems, making them
93 valuable genetic resources for sustainable production (Park et al., 2025).

94 Genetic analyses have shown the development of genetic introgression in exotic breeds,
95 such as Boer and Saanen (Kim et al., 2019). Partial introgression is also detectable in certain
96 farm-raised populations, reflecting ongoing efforts to enhance growth performance and
97 production efficiency under practical farming conditions. Moreover, Korean native black goats
98 have cultural and economic significance. Traditionally consumed as a medicinal food for its
99 high protein and mineral content, recently goat meat is increasingly valued as a low-fat, high-
100 protein source suitable for fresh meat production (Choi et al., 2023; Kim et al., 2022). To
101 encourage consumer preference for healthier and more sustainable meat products, it is essential
102 to establish standardized cutting and fabrication criteria that reflect the anatomical
103 characteristics and practical applications of this indigenous breed, thereby facilitating its
104 broader adoption in modern meat markets. Recent statistics also show a clear rise in demand
105 for black goat meat in Korea, with the domestic black goat population increasing by more than
106 70% from 2012 to 2021 and imports growing substantially in recent years, reflecting consumers'
107 heightened interest in healthier and more sustainable protein sources (KOSIS, 2023). Although
108 the differences among regional lineages are relatively small, variations in body size, growth
109 rate, and muscle development may lead to subtle changes in carcass yield and intramuscular
110 fat distribution. These characteristics suggest that such lineage-based differences should be

111 considered when establishing more refined and evidence-based cutting standards in the future.

112

113 **3. Anatomical Characteristics of Korean Native Black Goats**

114 Korean native black goats are ruminants, and their overall skeletal structure follows the
115 anatomical arrangement observed in cattle. The axial skeleton, composed of the spine, ribs,
116 scapula, and limb bones, is similar to that of other ruminant species (Singh, 2017; Lee et al.,
117 2025). However, the proportional development of individual body parts and the overall carcass
118 size are more comparable to those of pigs than to cattle, which is an important consideration
119 when designing slaughtering, cutting, and fabrication systems, making the direct adoption of
120 beef or pork cutting standards not applicable (Son, 1999). By contrast, beef tenderloins
121 typically weigh approximately 2.7–3.2 kg (primarily steers, ~18–24 months), pork tenderloins
122 weigh approximately 1.2 kg (primarily barrows, ~22–26 weeks), and goat tenderloins typically
123 weigh approximately 0.71 kg (primarily steers, ~5–6 months) (Wang et al., 2025; Segura et al.,
124 2023; Chao et al., 2024). Therefore, systematic anatomical assessment is required to clarify the
125 morphological characteristics of Korean native black goats for the development of species-
126 specific cutting and fabrication criteria.

127 Korean native black goats possess 13 pairs of ribs, similar to most goat and pig species,
128 which serve as crucial reference points for delineating the forequarter, middle body (including
129 the ribs, loin, and belly), and hindquarter regions of the carcass (Constantinescu, 2001). Owing
130 to their relatively small carcass size and lower weight compared with cattle, segmented division
131 and simplified fabrication units are preferable, particularly when defining the loin and
132 abdominal sections. The forelimb region exhibits a distinct muscular configuration around the
133 scapula, providing a clear anatomical reference for establishing cutting lines. In the loin and
134 abdominal regions, the junction between the lumbar vertebrae and iliac bones marks the
135 primary boundary for carcass division, whereas in the hind limb, well-developed femoral and

136 gluteal muscle groups necessitate finer segmentation for practical processing (Ali et al., 2021).
137 These anatomical distinctions underscore why cattle-based fabrication schemes are not directly
138 applicable to Korean native black goats. In particular, the junction between the lumbar
139 vertebrae and the ilium in Korean native black goats is shorter than that of cattle and narrower
140 and less robust than that of pigs, which may increase the risk of excessive muscle loss when
141 applying cattle-based cutting lines. Furthermore, the fascial structure around the scapular
142 region is relatively complex compared with cattle, making it difficult to obtain anatomically
143 clear boundaries when existing bovine cutting schemes are directly applied.

144 In summary, although Korean native black goats share a ruminant skeletal framework with
145 cattle, their overall body size (approximately 50-60 kg live weight) is far smaller than that of
146 beef cattle (typically >600 kg live weight) and is closer to that of commercial pigs
147 (approximately 100–120 kg live weight), resulting in regional muscle development patterns
148 that resemble pigs rather than large-bodied cattle (Uyen et al., 2023). Therefore, the
149 development of species-specific cutting and fabrication standards for Korean native black goats
150 should appropriately balance the anatomical characteristics common to both cattle and pigs
151 (Brassard et al., 2024).

152

153 **4. Current Practices and Challenges in Carcass Cutting of Korean Native Black Goats**

154 Despite increased demand for goat meat, a standardized carcass cutting and fabrication
155 system is lacking, revealing the industrial limitations of the domestic retail sector (Sujiwo et
156 al., 2025; Moon et al., 2021). Goat carcasses in Korea are typically separated into three primary
157 sections—the forequarter, middle body (ribs, loin, and belly), and the hindquarter—followed
158 by partial deboning before distribution to restaurants, health food stores, and general
159 households (Sujiwo et al., 2025). As illustrated in Figure 2, which depicts the proposed carcass
160 sectioning scheme, the forequarter is generally separated at the 5th to 6th attached ribs; the

161 middle body section comprises the loin, ribs, and belly; and the hindquarter is obtained by
162 disarticulating the femur joint and removing the lower shank. This simplified cutting approach
163 considers the small carcass size of black goats but presents several structural limitations
164 (Saengsuk et al., 2024). From a consumer perspective, the lack of standardized retail cuts
165 restricts selection diversity and creates confusion among producers, distributors, and
166 consumers due to inconsistent names and cutting shapes (Choi, 2023), hindering accurate price
167 estimation and quality comparison, consequently limiting the consumption of traditional dishes
168 such as *bulgogi* (Korean soy sauce-marinated meat), hot pots, and soups (Park et al., 2020).

169 Major goat-producing countries such as Australia and New Zealand have standardized
170 carcass division and fabrication systems comparable to those used for beef and lamb. Although
171 Australia's AUS-MEAT system defines standardized primal cuts for large, export-oriented
172 goat carcasses, direct application to Korean black goats is limited by their smaller carcass size
173 and domestic market orientation. Nevertheless, because Korean black goats share a ruminant
174 skeletal framework with cattle, the AUS-MEAT primal structure (Table 1) can serve as an
175 anatomical reference, while practical implementation in Korea requires simplified, locally
176 adapted cutting strategies. Moreover, alternate fabrication formats—including whole carcasses
177 and six-way cuts—have been implemented according to the specifications of key trading
178 partners including the United States, Korea, China, and Canada (Fig. 1). Furthermore, fat-
179 trimming levels and packaging requirements are customized according to market demand,
180 providing flexibility, thus strengthening export competitiveness. Since 2018, imports of goat
181 meat from Australia and New Zealand have consistently increased, with Australian products
182 accounting for approximately 98.8% of the total imports to Korea, largely due to tariff
183 reductions following the Korea–Australia and Korea–New Zealand Free Trade Agreements
184 (Rural Development Administration, 2025).

185

186 **5. Current Utilization of Korean Native Black Goats in the Food Service Sector**

187 In Korea, native black goats have long been recognized as a traditional health food valued
188 for their nutritional properties, including high levels of protein, amino acids, and iron, which
189 are associated with various health-promoting effects (Kim et al., 2019). In the past, native black
190 goat consumption in Korea showed distinct regional characteristics (Son, 1999). Based on an
191 online survey conducted by the authors (including restaurant menus, franchise websites, and
192 regional food-related online sources), clear regional differences were identified in consumption
193 patterns and preferred cuts of Korean native black goat meat.

194 In Jeolla Province, Korean native black goat meat has traditionally been utilized across a
195 wide range of cuts, including ribs, loins, legs, and offal, reflecting a cuisine-oriented approach
196 that emphasizes grilling, pan-frying, and seasoned dishes. The development of restaurant
197 franchises originating from this region has contributed to the nationwide dissemination and
198 commercialization of these preparation styles, positioning Jeolla cuisine as a key driver in the
199 modernization of black goat meat consumption.

200 Although Chungcheong Province hosts a large number of black goat farms, its utilization
201 patterns remain relatively limited in terms of region-specific dishes. Goat meat produced in
202 this region is primarily processed and distributed to other provinces, reinforcing its role as a
203 raw material supply base rather than a center of culinary innovation.

204 In Gyeongsang Province, farm-based restaurants commonly employ a diversified
205 utilization strategy, applying different cuts to boiling, grilling, raw meat dishes, and processed
206 products. The active use of secondary cuts and by-products in this region reflects a practical,
207 whole-carcass utilization approach that enhances menu diversity and economic efficiency.

208 Gangwon Province, characterized by mountainous terrain suitable for goat farming,
209 emphasizes health-oriented preparations, including soups, stews, and grilled dishes often
210 combined with local medicinal ingredients. This regional pattern highlights the close

211 association between black goat meat consumption and wellness-focused culinary traditions.

212 In the capital region, where regional food cultures converge, Korean native black goat
213 meat is utilized in both traditional health-focused dishes and modern fusion menus. This trend
214 reflects urban consumer preferences for convenience, variety, and novel culinary applications,
215 supported by advanced distribution and food service infrastructures.

216 Taken together, these regional utilization patterns demonstrate that, while culinary
217 expressions differ, the fundamental use of carcass components remains broadly similar across
218 regions. The gradual convergence toward standardized menus and centralized processing
219 underscores the growing importance of unified cutting and fabrication criteria to support
220 consistent quality, pricing, and product development in the expanding goat meat market.

221

222 **6. Recommendation on Cutting Method for Korean Native Black Goat**

223 Based on the anatomical characteristics and relatively small carcass size of Korean native
224 black goats, a half-carcass division incorporating a three-primal cutting and ten-subprimal
225 fabrication system is recommended to improve the processing efficiency and market utilization
226 (Fig. 2). The boundaries between primal and sub-primal cuts were defined using reproducible
227 anatomical landmarks, including rib count, vertebral transitions, major joint structures, and
228 natural fascial planes, to ensure consistent fabrication while minimizing muscle loss and
229 improving applicability compared with cattle-based cutting schemes. According to the
230 compositional data presented in Figure 2, the forequarter exhibits a fat content ranging from
231 approximately 1.9% to 4.02%, which can be categorized as medium-to-low-fat. Within this
232 section, most muscles have between 1.9% and 2.9% fat content, whereas the foreshank contains
233 relatively more connective tissue and a slightly elevated fat level (4.02%), contributing to the
234 upper limit of the range. The middle body contains 1.74–4.10% fat content, with most muscles
235 displaying intermediate fat levels, whereas the belly (flap) represents a localized high-fat area

236 with approximately 4.35% fat. In contrast, the hindquarter shows a distinctly low-fat profile of
237 1.44% to 2.45% (Saengsuk et al., 2024). These classifications were used to describe the relative
238 fat distribution and guide the recommended culinary applications for each primal region.

239 Forequarter: This section includes the shoulder, neck, and anterior ribs (up to the 5th–6th
240 rib). Muscles in this region contain a moderate amount of connective tissue and medium-to-
241 low fat, making them suitable for boiling, stewing, or slicing.

242 Middle body: This section extends from the posterior ribs to the lumbar vertebrae, and
243 contains the ribeye, loin, and belly muscles. It is characterized by intermediate to high fat
244 content and good tenderness, making it ideal for grilling.

245 Hindquarter: This section includes the leg and hip regions, primarily composed of the
246 femoral and gluteal muscle groups. These muscles are low in fat and slightly tougher but
247 flavorful, making them suitable for slicing, marinating, or processing into value-added products
248 such as sausages or ready-to-cook meat.

249 Each primal section can be further divided into smaller sub-primal cuts according to
250 muscle structure, cooking method, and market preference. For example, the hind legs can be
251 separated into the semimembranosus, semitendinosus, and biceps femoris muscles to produce
252 various product types. Establishing this standardized cutting framework will increase carcass
253 yield and price transparency, and facilitate the development of diverse goat meat products that
254 reflect consumer preferences and culinary styles.

255

256 **7. Research Perspectives on the Future Development of the Korean Goat Industry**

257 To ensure further growth and competitiveness, future research should adopt a
258 multidisciplinary approach that connects animal science, food technology, and policy
259 innovation. In Korea, where black goats are mainly raised for medicinal purposes, recent
260 research has begun to focus more on meat-oriented breeding and industrial applications,

261 especially in areas such as carcass standardization, quality grading, and value-added product
262 development (Abhijith et al., 2023).

263 From a technological viewpoint, future studies should aim to establish data-driven cutting
264 and fabrication systems supported by anatomical, biochemical, and imaging analyses.
265 Computed tomography (CT) and 3D carcass modeling can provide precise structural
266 information. Combining these approaches with molecular and proteomic techniques will
267 deepen our understanding of factors that influence meat tenderness, flavor, and functional
268 properties, thereby supporting scientifically validated differentiation among proposed cuts
269 (Anderson et al., 2015). In addition, sustainable production systems such as smart farming
270 technologies and resource-efficient management remain important, but their relevance lies
271 primarily in providing uniform animals and production conditions, which in turn enhances the
272 reliability of standardized cutting and grading systems (Teixeira et al., 2020).

273 Taken together, research that effectively links scientific innovation, industrial practices,
274 and institutional standardization will aid the advancement of the Korean goat industry. These
275 multidisciplinary approaches will enable the coordinated evolution of production, processing,
276 and marketing systems, while enhancing export potential through compatibility with
277 international carcass and cut classification frameworks such as AUS-MEAT and IMPS, thereby
278 supporting global competitiveness and sustainability in the meat industry.

279

280 **8. Conclusion**

281 The Korean native black goat industry is transforming from its traditional medicinal role
282 to a modern meat production system. However, commercially raised goats in Korea show
283 substantial genetic heterogeneity due to extensive crossbreeding, leading to marked variability
284 in carcass traits and highlighting the need to establish fixed and reproducible carcass
285 characteristics as a prerequisite for effective standardization and industrial development. Also,

286 the lack of standardized cutting and fabrication criteria limit industrial development. This
287 review highlights that species-specific anatomical characteristic necessitate three-primal
288 cutting and ten-subprimal fabrication concepts comprising the forequarter (shoulder loin, front
289 rib, shoulder, and foreshank), middle body (loin, rib, and belly), and the hindquarter (round,
290 hind leg, and hindshank) to ensure efficient processing, fair trade, and transparent product
291 classification. Establishing such a standardized system would enhance consumer confidence,
292 improve carcass utilization, and strengthen the overall industry competitiveness. Future
293 advancements will rely on the integration of scientific innovation with institutional support,
294 particularly in the development of carcass grading, labeling, and pricing systems suited for
295 improved goat strains. Moving toward a unified and evidence-based standard will increase
296 domestic self-sufficiency and position Korean goat meat as a globally recognized, high-quality,
297 and sustainable protein source.

298

299 **Acknowledgements**

300 This study was supported by the Cooperative Research Program for Agricultural Science
301 and Technology Development (Project No. RS-2025-02216992) of the Rural Development
302 Administration, Republic of Korea.

303

304 **References**

305 Abhijith A, Warner RD, Dunshea FR, Leury BJ, Ha M, Chauhan SS. 2023. A review of some
306 aspects of goat meat quality: Future research recommendations. *Anim Prod Sci* 63:1361–
307 1375.

308

309 Ali M, Choi YS, Nam KC. 2021. Physicochemical attributes, free amino acids, and fatty
310 acids of the five major cuts from Korean native black goat. *Anim Technol* 8:23–33.

311

312 Anderson F, Pethick DW, Gardner GE. 2015. The correlation of intramuscular fat content
313 between muscles of the lamb carcass and the use of computed tomography to predict
314 intramuscular fat percentage in lambs. *Animal* 9:1239–1249.

315

316 Brassard MÈ, Chouinard PY, Tremblay GF, Gervais R, Pouliot É, Tessier L, Cinq-Mars D.
317 2024. Growth performance, carcass characteristics, and meat quality in meat and dairy goat
318 kids fed a concentrate-based diet or allotted to an intensive rotational grazing system. *Can J
319 Anim Sci* 104:488–502.

320

321 Chao, M. D., Ma, D., Jeneske, H., Pokharel, S., Moallem, J. T., Stephens, L. N., Kang, I.
322 (2024). Skin-on and skin-off processing methods affect processing efficiency, product yield
323 and meat quality of goat carcass. *International Journal of Food Science and Technology*,
324 59(10), 7053-7062.

325

326 Choi DM, Kang KM, Kang SM, Kim HY. 2023. Physicochemical properties of black Korean
327 goat meat with various slaughter ages. *Animals* 13:692.

328

329 Choi YS, Jeong JY, Gu MJ, Jeon DH, No YJ, Park JY, Nam KC. 2022. Survey of Actual
330 Consumption Conditions and Consumer Perception of Black Goat. *J Korea Acad-Ind Coop
331 Soc* 467–469.

332

333 Constantinescu GM. 2001. Guide to regional ruminant anatomy based on the dissection of the
334 goat. pp i–xiii.

335

336 Glitsch K. 2000. Consumer perceptions of fresh meat quality: Cross-national comparison. Br
337 Food J 102:177–194.

338

339 Gomes HFB, Emerson MS, Marques RO, Lourençon RV, Cañizares GI, Brito EP, Gonçalves,
340 HC. 2022. Prediction of carcass tissue composition of goat kids of different breeds through
341 meat cuts. Sci Electron Arch 15.

342

343 Hoa VB, Lee JA, Kang SM, Park WS, Kim DG, Kim HW, Bae IS. 2025. Influence of
344 crossbreeding on the quality and nutritional values of goat meat. Food Sci Anim Resour
345 45:759.

346

347 Kang HC, Kim EH, Myung CH, Kim JY, Song SH, Yang DY, Lim HT. 2023. A study on
348 conservation value evaluation of native black goat using microsatellite (MS) marker
349 information. J Anim Breed Genomics 7:37–44.

350

351 Kim HJ, Kim HJ, Jang A. 2019. Nutritional and antioxidative properties of black goat meat
352 cuts. Asian-Australas J Anim Sci 32:1423.

353

354 Kim HJ, Kim HJ, Kim KW, Lee J, Lee SH, Lee SS, Jang A. 2022. Effect of feeding alfalfa
355 and concentrate on meat quality and bioactive compounds in Korean native black goat loin
356 during storage at 4°C. Food Sci Anim Resour 42:517.

357

358 Kim JY, Jeong S, Kim KH, Lim WJ, Lee HY, Kim N. 2019. Discovery of genomic
359 characteristics and selection signatures in Korean indigenous goats through comparison of 10
360 goat breeds. Front Genet 10:699.

361

362 Kongsro J, Skramstad TE, Alvseike O. 2025. Carcass and meat quality and innovation in

363 fresh meat industry. *Meat Sci* 109960.

364

365 Lee ED, Tomple BM, Kim GE, Kim DK, Choi BH, Kim KW. 2025. Evaluation of

366 morphological and growth characteristics among three Korean native black goat strains. *J*

367 *Anim Plant Sci* 35:602–611.

368

369 Listrat A, Lebret B, Louveau I, Astruc T, Bonnet M, Lefaucheur L, Bugeon J. 2016. How

370 muscle structure and composition influence meat and flesh quality. *Sci World J*

371 2016:3182746.

372

373 Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2024. Livestock Statistics and

374 Policy Information. Available from: <https://www.mafra.go.kr>. Accessed at Nov 22, 2025.

375

376 Moon SH, Yun YS, Kim NY, Chung S, Zhang QM, Tang Y, Oh M. 2021. Determination of

377 maintenance energy requirements for fattening castrated Korean black goats (*Capra hircus*

378 *coreanae*). *Animals* 11:1543.

379

380 Park GS, Kwon WJ, Seo BJ, Kim C. 2025. Infectious disease challenges in Korean native

381 black goats (KNBGs): Current status, control needs and strategic approaches. *J Infect Dis*

382 *Diagn* 10:308.

383

384 Park JY, Lee SY, Choi YS, Nam KC. 2020. Quality characteristics of low-fat black goat

385 sausage using loquat leaf. *J Agric Life Sci* 54:59–65.

386

387 Rural Development Administration. 2025. Goat meat imports increase fivefold in 10 years;
388 self-sufficiency rate drops. Available from: <https://nongsaro.go.kr>. Accessed at Sep 10, 2025.

389

390 Saengsuk, N., Sangsawad, P., Paengkoum, P., & Pongsetkul, J. 2024. Lipid and volatile
391 profiles of various goat primal cuts: Aspects of nutritional value and flavor/taste
392 attributes. *Foods*. 13: 492.

393

394 Singh, B. 2018. Dyce, Sack, and Wensing's textbook of veterinary anatomy. St. Louis,
395 Missouri: Saunders.

396

397 Son YS. 1999. Production and uses of Korean native black goat. *Small Rumin Res* 34:303–
398 308.

399

400 Statistics Korea. 2023. Agricultural and livestock products statistics. KOSIS (Korean
401 Statistical Information Service). Available from: <https://kosis.kr>. Accessed at Sep 9, 2025.

402

403 Sujiwo J, Jang A. 2025. Korean native black goat: A review on its characteristics and meat
404 quality. *Food Sci Anim Resour* 45:329.

405

406 Teixeira A, Silva S, Guedes C, Rodrigues S. 2020. Sheep and goat meat processed products
407 quality: A review. *Foods* 9:960.

408

409 Tibebu A, Tamrat H, Bahiru A. 2024. Impact of food safety on global trade. *Vet Med Sci*
410 10:e1585.

411

412 Segura, J., Aalhus, J. L., Prieto, N., Zawadski, S., Scott, H., & López-Campos, Ó. (2023).

413 Prediction of primal and retail cut weights, tissue composition and yields of youthful cattle

414 carcasses using computer vision systems; whole carcass camera and/or ribeye camera. Meat

415 Science, 199, 109120.

416

417 Statistics Korea. 2025. Customs Service Export & Import Trade Statistics. Korea Customs

418 Service. Available from: <https://tradedata.go.kr/cts/index.do>. Accessed at Sep 10, 2025.

419

420 U.S. Department of Agriculture, Agricultural Marketing Service. 2020. IMPS (Institutional

421 Meat Purchase Specifications). Fresh Goat Series 11. Available from:

422 <https://www.ams.usda.gov/>. Accessed at Oct 22, 2025.

423

424 Uyen, N. T., Van Cuong, D., Thuy, P. D., Son, L. H., Ngan, N. T., Quang, N. H., & Hwang,

425 I. H. (2023). A comparative study on the adipogenic and myogenic capacity of muscle

426 satellite cells, and meat quality characteristics between Hanwoo and Vietnamese yellow

427 steers. Food science of animal resources, 43(4), 563.

428

429 Wang, Y., Bush, J., & Bohrer, B. M. (2025). Meat Quality Attributes and Sensory

430 Characteristics for Pork Tenderloins (M. Psoas Major). Meat and Muscle Biology, 9(1).

431

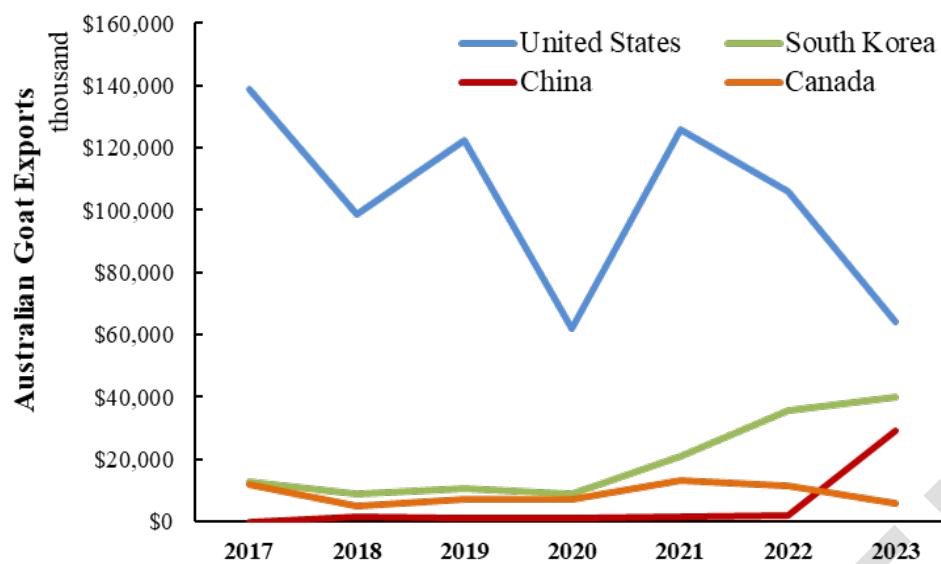
432 Webb EC. 2014. Goat meat production, composition, and quality. Anim Front 4:33–37.

433

434 Yang L, Li S, Hou J, Tang Z, Shi B, Luo Y, Zhao F. 2025. Variation in Intramuscular Fat

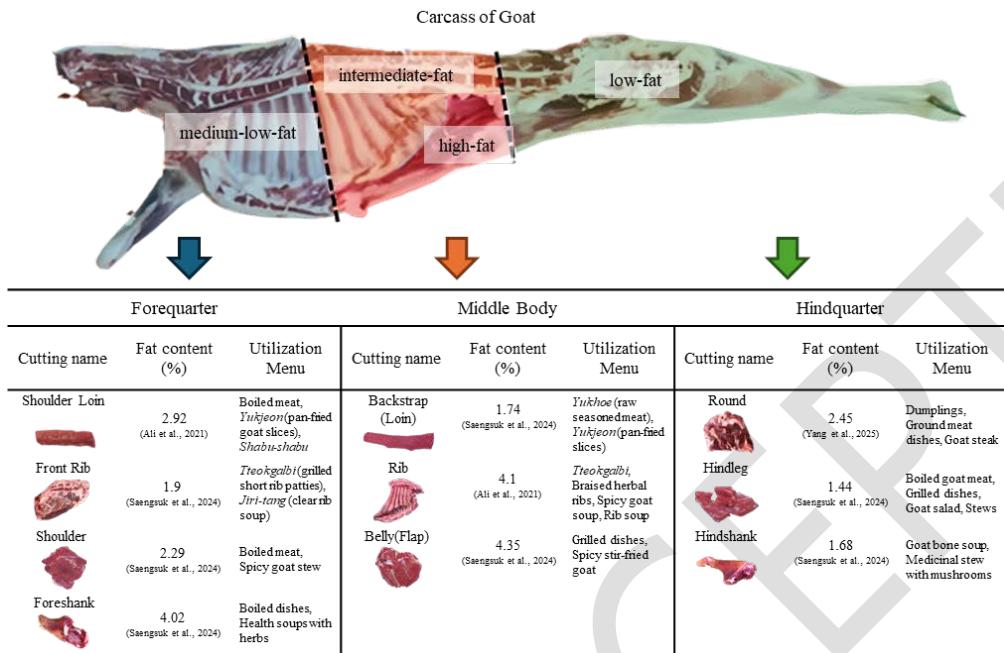
435 Deposition of Goats and Sheep and Its Correlation with Gut Microbiota. Foods. 14:1885.

436


437 **Tables**

438 **Table 1. Major primal cuts of goat carcass with their common names and**
439 **corresponding H.A.M. (Handbook of Australian Meat) code numbers standardized for**
440 **international trade.**

Common name	Cutting name	H.A.M number
Shank	Foreshank	5030
	Hindshank	5031
Tenderloin	Tenderloin butt off	5082
	Butt tenderloin	5081
Loin	Backstrap	5109
	Eye of loin	5150
	Rack	4932
	Rack cap on	4756
	Rack cap off	4764
Leg	Chump on	4800
	Chump off	4820
	Leg chump on (ABR)	4801
	Leg shank bone	4821
	Square cut shoulder	4990
	Shoulder-oyster cut	4980
	Shoulder-banjo cut	4995
	Neck	5020
Flank	Breast and Flap	5010


441

442

443 **Figure 1. Export value of Australian goat meat to the top four global markets (United
444 States, South Korea, China, and Canada) from 2017 to 2023. (Trade statistics, 2025)**

445

446

447 **Figure 2. Proposed cuts of goat carcass.** The carcass is divided into three main sections (forequarter, middle body, and hindquarter) with
 448 corresponding wholesale cuts. Ali M, Choi YS, Nam KC. 2021. Physicochemical attributes, free amino acids, and fatty acids of the five major cuts
 449 from Korean native black goat. Anim Technol 8:23–33.

450